On design and implementation of a contract monitoring facility

Z. Milosevic, S. Gibson, P. F. Liningtgnl. Cole, S. Kulkarni.

Distributed Systems Technology Centre, ‘University of Kent,
University of Queensland, Kent, CT2 7NF, UK.
Brisbane, QLD 4072, Australia. pfl@kent.ac.uk

{zoran, sgibson, colej,
sachink}@dstc.edu.au

Abstract activities, such as regular checks of contractsedtdn
) ) filing cabinets, via the use of spreadsheets atabdaes to
In this paper we present a solution to the problein  ecord information about contracts, possibly indigd
designing and implementing a contract monitoringiliy ~  simple notification triggers, to the more complepjsort as
as part of a larger cross-organisational contract part of Enterprise Resource Planning (ERP) systems.
management architecture. We first identify key ez . . .
Even in cases where there is electronic suppoiE@ivl,

requirements for such a facility and then present o the focus of these systems has been ‘inward’ -nternal
contract language and architecture that address keyenter fise data and yrocesses However the regsiits of
aspects of the requirements. The language is based h P tended tp ) h hoi I,d emel”utem "
precise model for the expression of behaviour avitties the extende ben erprise, whic mcdu_ es ((:jc_) abeegall
in the extended enterprise and it can be used fitd bu ﬁqr(i?gg;nmgﬁgtsdeﬁf;f:naa ;%Tepa‘rc])ﬁt\?vrz]ar dl'tspt;?s;)ré%gl\‘,aert on
models for a particular enterprise contract envinoent. ECM. This would allow more transparency of the data

These models can be executed by a contract enite t processes and performance of trading partnersditi@ad to
supports the contract management life cycle at kbt within the organization itself. Further, this ne¢dse done

contract establishment and contract execution phase ; . : o
in a real-time manner and with minimum latency for
Keywords: Contract Monitoring, Contract Language, information about partners’ data and behaviour.

Contract Architecture In response to these demands, several vendors have
begun offering standalone ECM functionality that
increasingly supports the cross-organisationalrenment.
[2][3][4][8]. A common feature to all these prodsds their

Gaim to support full contract life cycle managemertis
ranges from collaborative contract drafting andatiedion
(mainly exchanging electronic documents), via gjeraf
contracts and milestone-driven notifications, toalgiic

1. Introduction

Most interactions between business are conducte
according to the rules and policies stated in lgdzihding
agreements or contracts. Contracts specify obtigatifor
the signatories to the contract, as well as theimpssions

and prohibitions, and may state penalties in cagesre features.
these policies are violated. They may also statens for However, these systems generally follow the databas
outstanding performance. approach typical of most ERP systems and the custra

semantics is implicitly encoded as part of varidasa and
processes. This is perhaps because there is dyreelsick

of an overall model that expresses semantics dfacis as

a governance mechanism for cross-organisational
collaboration. In addition, the functionality ofetbe systems

is focused primarily on one type of contract andoislt
around the processes that accompany it, e.g. omnt
contracts, service contracts etc. This can be #aliimn

In spite of the importance of contracts as a goveca
mechanism for business collaborations there iseotisr
inadequate support for using contract informatian
manage cross-organisational collaborations, inodhe
management of the contracts themselves. We refbotto
of these activities as enterprise contract manageme
(ECM). At present, ECM functionality ranges fronanual



because organisations typically deal with variogses$ of
contract with varying requirements and future EG¥suld
be able to support multiple kinds of contract
simultaneously, as part of one system.

the contracts. If the contract activities areorépd using
events, then a language of high expressive poweseasled

to cater for many possible relationships betweenhsu
events — which we call event patterns. Examples are

This paper presents our solution to the problem ofSeduences of events and causal relations betweerotw

expressing contract semantics in a way that enahte®
efficient and flexible ECM in the extended entespriThis
consists of aontract languagespecifically developed for
the contracting domain andcantract enginghat supports

more events. The language should allow efficient
construction of the models that describe the strecof
entities associated with the contract and the msER in
which they are involved. Ideally, this language bo

common contract management activities. The language'@Present contract related concepts in a form wnaild
called the Business Contract Language (BCL) has adllow domain experts to enter contract related data

particular focus on supporting event-based momiprof
business activities associated with contracts. diggne is
based on our architecture model, the Business @aintr
Architecture (BCA), initially proposed in [6]. ThBCL is
used to express behaviour and constraints of specif
contracts and to design the corresponding spewnifitract
models. This, in combination with the contract ewgi
which interprets these models, provides a basisofar
model based implementation approach.. It also esabl
dynamic updates of the model to reflect new chariges
business rules and structures.

The paper begins (in section 2) with a discussibn o
requirements for contract monitoring in a cross-
organisational environment. Section 3 provides\arnoew
of the community model, which is the foundation BCL.
BCL is presented in section 4. Section 5 describ@s
BCL is used in conjunction with our contract engibhased
on an contract architecture model, Business Caistrac
Architecture (BCA). Section 6 describes related kvand
section 7 summarises our approach and outlinestidine
for our future work.

2. Contract monitoring requirements

One of the key phases

in automated contract

support their contract management activities. Iditazh,

the language should allow entry of such informatidrile

the system is in operation, including the addibdmupdates

to the existing models as needed. Our solutiorstmh a
language is presented in section 4 and the way this
language is executed by the corresponding congnagine

is discussed in section 5.

In addition to the expressive monitoring languagee
also needs reliable event generation and reporting
mechanisms dealing with factors such as the acgurfc
the reported events and impact of the event gdoerat
process and organizational threats from it. Theseds
discussed in detail in [10] and are summarised.here

Accuracy of event reports- one of the challenges in
designing reliable monitoring systems arises frome t
problem of maintaining a consistent view of time in
distributed systems. The implication of this isttllaere
may be some variability in the monitoring mechanisng.
the ordering of events reported close togethemm,tor the
relative ordering of an event and a timeout forréseipt.
Thus, when designing the monitor, one may needjteea
an acceptable latitude for timings, taking into aott the
knowledge of the properties of the infrastructureise, and
of the contract details.

Performance issues performance bottlenecks can arise

management where a precise expression of contract’ situations when the monitoring is used on adasgale

semantics is needed is contract monitoring. Thizesause
contract monitoring requires expression of the megu
behaviour of the contract signatories. For exampie,

required, or permitted, sequences of events that th

signatories are expected to exhibit in fulfillindnetr
obligations must be stated in the contract. Anothemple
is compliance with regulatory guidelines as for rapée
those related to the recent Sarbanes-Oxley Actiilgk in
the USA. These requirements have implication fahlthe
contract language design and contract
components.

Expressive contract language a contract monitoring
language is required to check the past and cubedmviour
associated with the execution of activities relatedthe
contract and ultimately the behaviour of the sigrias to

architecture,

and solutions need to be provided to deal with, $ugsh as
the local processing of events to generate higbeell
events and summary reports of activity.

Security issues- many security issues are associated
with the lack of absolute trust in e-contractinglan the
design of the monitoring mechanism it is importaot
consider the trustworthiness of all the parts & glystem.
This includes the trust of ECM system users, whedn®
establish confidence in:

an event reporting mechanism employed by the
monitor, which can be addressed by including a fproo
of authenticity and a guarantee of non-repudiation
the events;



« a party who owns the monitor (possible choices arepattern of role-filling in which two particular re$ are filled
trusted third party or an agent for one of the by the same object.

participants); Typically, an extended enterprise is modelled as a
« the components of the infrastructure they use, sssch number of different communities to capture diffégren
repositories holding contract information; aspects of its behaviour and one object can fiksdn

different communities. For example, one object righ

information; an example is a requirement by a servi fuIﬁIImg r(_)les In & procurement process communign
provider for the non-disclosure of their actual authorization community and an auditing community.
performance. Community behaviour has two aspects. The first @spe
deals with the specification of basic behaviour {@hich. is
expressed in terms of a sequence of actions thatlarys
presented in [14]. carried out _by the parties filling t_he role_s andi_cras styles
] k . of constraints on these actions, including temporal

Integration with other enterprise system®©ne of the  gnstraints. An example is a sequence of actioms th
requirements of an ECM s its ability to operate in characterize this community behavior. The secosubet
heterogeneous environments and to be relativelylyeas ¢ community specification is concerned with defiithe
integrated with other enterprise systems with malim pounds of reasonable behaviour and with expressing
disruption to the existing systems. One way of ddiis is  preferred choices within them. This aspect coverslah
using Web Service technology as an integration constraints, such as permissions, prohibitionshtigations

mechanism.. In terms of monitoring, it is necess@y  on the objects filling the roles, rather than giyia single
provide as least intrusive mechanism as possible f0 5cceptable sequence of actions.

intercepting messages between parties and a possibl
approach to this is to use an event listener/mgnithich
receives notifications of contract related behawvifoom the
components using a publish/subscribe mechanisnall§in o
the use of open standards such as XML, Web Sereicds reuse of communities to express, for example, commo
OASIS legalXML e-contracts will allow deploying ECM contract elements [15].

systems on various platforms. In addition to the construction of business rulgstlie
peer-to-peer composition of communities indicatbdve,
there can be hierarchical composition, so thanglsirole

in a high-level community is filled by an objectathhas

] o resulted from the definition of some smaller-scale
Our approach for the expression of contract sercsigi community. For example, a single role in confirmithg

based on the community model inspired by ODP staisda correctness of a tender in some bidding processitmig
[7] and further refined in [9] [10]. detail, be filled by a community formed by a qualit
A community is a configuration of objects definaml t assurance team [15].
express some common purpose or objective [7]. It is  Another structuring technique in the modelling rffei-
introduced to capture the organizational structofethe  grganizational processes is the definition of petic The
enterprise and the various constraints within which in - majn idea here is to acknowledge the fact thasthestures
combination can be used to capture and specify @mm peing defined are evolving, and to distinguish Estwparts
reusable patterns of constraints. of the specification that are essential to the @sscbeing
This organizational structure is described in terofis  described, and so cannot be varied without effeltiv
roles so that the structure is independent of tigévidual starting over again, and those parts that can peated to
objects representing actors and resources in theneded vary, either by local choice or by a foreseen psecef
enterprise. A community defines constraints on the renegotiation. These circumscribed areas of vditiatzire
behaviour of these roles, and in any instance & th the policies associated with the enterprise comtiami
community these roles are each filled by specitiject [15].They can be expressed in modal terms, as atiigs,
instances. Note that a community instance may kawee permissions, prohibitions, and authorisation. In an
roles unfilled — and this is useful when modellgiations contracting environment, policies can be a very grbu
when some organisational positions are vacant.omes  tool for tailoring general contract behaviour te thpecific
cases a community may place additional constraimtisow circumstances in which the contract instance isgderate.
a single role is to be filled. For example, a sapan of A policy can be defined, for example, to indicatavhthe
duties requirement may be expressed by prohibiing progress from stage to stage is to be signalledhao

« the monitoring system to preserve confidentialify o

A more detailed discussion about the issues ot tas
part of contract management and some initial smhstiare

In general, the definition of a community in termfisa
set of roles allows great flexibility in deciding\ the roles
are to be filled, leading to considerable flexiiilfor the

3. Community model



various kinds of foreseeable violations, such at la
payment, are to be acted upon.

Policies can also apply to control the extent taciwhihe
structure of the contract can be allowed to evalita time,
indicating, for example, whether the way objectisréiles
can be updated, or even whether the number ofnossaof
some general kind of role can be increased or deerkto
accommodate changing levels of interest, and isether
there is a specific limit to ensure a sensible goofor the
activity [15].

For a more detailed description of the community

modelling see [8] [11].

4. Contract Language

This section presents the main features of outisoltio
the monitoring requirements listed in section 2.isTh
solution, the BCL, is developed based on the peecis

modelling concepts of a community model introduced *

earlier.

4.1 Main characteristics

Domain specific BCL was developed to enable
expression of contract semantics — primarily fontcact
monitoring purposes. In this respect, the BCL idoanain
specific language that introduces modelling abtitvas
which correspond directly to the contract termsduisethe
contract management domain.
unstructured text of contracts, stated in natiaaguage to
be re-expressed in a structured form, which is ailento
automated processing (see Fig. 1). BCL is aimed/zt is
in [12] referred to as ‘ultimate pair programmingrhich
involves a domain expert and expert developer vmngrki
together,. We note, that the BCL concepts are @gefer

nature and can be used to express monitoring of an

business activity within or across organisationst, only
those directly related to contracts. Although th€LBis
based on the precise community model and evenérpatt
semantics of [5] we note that there is currentlyfoiomal
mathematical underpinning to the language and ithisn
area of future research.

Declarative- BCL is primarily a declarative language
whose notation allows the expression of contrachao

concepts in a manner close to the way domain expert

think. This allows the user to express explicitlyeit
intention, thewhat of the problem, while the language
processor takes care of tHeow A BCL language
processor embodies the semantics of the languagéaro
A small subset of BCL is imperative in nature atds t

It allows the typically .

Event-driven —most of the BCL execution is triggered
by events. For example, states are update in resptm
events, policy checking is triggered by events and
generation of internal events is driven by othesrgs. The
event-driven characteristic of the language israpairtant
contributor to the declarative nature of the largguarhis
approach again facilitates the expression of whatlsl be
done in response to some occurrence and the emgiine
take care of detecting the occurrence and triggetire
execution.

Model-based- we follow a model-based philosophy to
ensure rapid and predictable development and deyoy
for specific contracting environments. This entadiie use
of:

¢ modelsto describe rules, structures and constraints of a
particular contracting environment by using BCL
modelling constructs; the models are used to
parameterize the contract framework described below

an e-contracframework which is a body of code that
implements the aspects that are common across the
entire contracting domain; this framework consgsty

a pre-defined contract engine, which implements the
semantics of BCL processing aiidother components
defined in BCA; the role of the BCL models is to
facilitate instantiation of specific contractinges@arios
using the generic contracting functionality prowddesy

the framework. Currently we use the J2EE platftom
implement our framework.

templates to represenpatterns of structure and
behaviour such as community modelling concepts
described in section 3.

BCL configuration models are used to parametefige t
framework, producing a specific contract management
system. This model-interpreter paradigm can beidensd
as one specific style of model-driven development.

y

4.2 BCL modelling concepts

BCL language concepts can be grouped in three
categories, described in the order of higher level
abstractions to lower level of abstraction, .

4.21. Community and Policies

A set of BCL concepts that includes the definitioh
communities and policies is introduced to define
organizational, basic behavioural and modal comta
associated with contracts. These concepts corestifut
highest level of abstraction in the BCL as theedity map
onto the contracting domain - namely onto the terms

subset was developed as a supporting mechanisteto t expressed in natural language expressions of aisira

declarative aspects of the language.



Organizational constraintscan be expressed using a e
community model that specifies the roles involvedai
contract and their relationships, including hiehécal
relationships. The roles can represent organizatampart
of their collaboration governed by an overarching
community, representing the contract, or structwréhin
organizations so that it is possible to model méaér
organisational relationships as well. In order tpport the
notion of a contract template as a basis for tleatan of ) )
the corresponding contract instances we introduwe t ° €vent types to be created as actions when certain
concept of a community template and instantiatioles conditions have been matched, e.g. creation ofr@ont
that specify conditions for the creation of a cantr as violation or contract fulfilment events; this ismsiar
explained in the example in section 4.3. approach as in Event-Condition-Action paradigm [20]

Basic behavioural interactions between roles in a  1he purpose of BCL's set of event and state related
contract express the ordering of their actionstepsin a  CONCepts is to support real-time evaluation ofekecution
business process carried out by the signatoriascintract. ~ ©f basic behaviour and policies as stated in thetraot
In BCL, most basic behaviour constraints are ex@es W|th the aim of detecting contract violations orntract
using event patterns as described in section 4.2.2. fulfilments.

Similarly, policies apply to the roles involved, In terms of states, this evaluation can, for exampl
specifying refinement of their behavior, in partmumodal ~ consist of checking whether a certain internalestatated
constraints such as obligations, rights, permission 0 & contract has occurred; an example might becting
prohibitions, accountability, authorizations and @a As  Whether the total number of cost-free withdrawaksr p
with basic behaviour, policy conditions can be essed in ~ Month has reached its maximum. We note that theges
terms of event patterns. in state occur as a result of the correspondingtever

The main purpose of the community and policy set of event patterns and that th_e concept of state chattsthe
BCL concepts is to define collaborative arrangement changes in the values of individual variables, sasttotal

. ) number of transactions in this month, or the change
bet_ween parties. We note that, although the comiyianid associated with finite state machine transitions.
policy aspects of the BCL were developed for the i .
contracting domain, they also have wider appliégbiiuch In terms of event patterns, the evaluation can lire/o
as for example the description of internal policieishin checking whether one or several events have oatme
organizations. if so, we say that the event pattern is satisfiedBCL an

| der t ¢ f ity definiti event represents an occurrence of a certain typesvént
N order to support reuse ob community definitions can be atomic or it can have a duration. In thee aafs
define a community template which enables automatedmultiple events BCL provides a rich set of optidies
support for the creation of community instancesbdam it. expressing relationships between events, hower fi
Part of this template is the specification of astamtiation description is beyond the scope of this E)aper \Wwige
rule Wh'Ch. contains an event pattern Wh'(.:h def"‘*"_'“’@’ to representative examples of event pattern expres§idi:
create an instance and how to parameterise thanhices ’ )

As with other aspects of BCL, these language « Sequence of events - the event pattern is satigfirezh
descriptions are stored in the Notary and will beduby the ?r:leT:qE\e/igf' have occurred in the order specified

Contract Monitor and Business Activity MonitorinBAM) R S
engine to initiate contract monitoring activiti€ee section *  Disjunction of events - the event pattern is §atis
when any of the events have occurred;

5 for the details of these components.
e Conjunction of Events - this pattern is satisfiedew
all the events have occurred;

event patterns -  for detecting specific occuresnc
related to the contract either as a single evenasor
multiple events related to each other; events eanltr
from the actions of entities filling community rsle
can occur as a result of deadlines, or can be gtter
within the system

« internal states and their changes in response do th
events;

4.2.2. Eventsand States

BCL concepts of Events and internal States are tsed
describe detailed behaviour constraints includedhiwi
basic behaviour and policies associated with tmengonity
models. These are fundamental behaviour concegtsm
be used for most Business Activity Monitoring (BAM)
applications, and are not related only to busimesgracts.
This group includes concepts for the expression of:

Quorum — this pattern is satisfied when a specified
number from the set of all events have occurred;
Event Causality - the event pattern is satisfiegnvthe

currently matched event has as its causal parené so
previously recognised event.

A special kind of event pattern is introducedattow

for the detection of certain conditions that need be



determined during some ‘sliding’ period of time.iFlevent .

pattern is called a sliding Time Window event paitd he
time window is defined by the window’s width, theesific
condition that needs to be checked within that winde.g.

maximum number of Purchase Order requests issued pe,

day), the expressions stating what to do when dition is
found or is not found, and if, appropriate, howntove the
window forward.

The event pattern mechanism in BCL has many
similarities to the specification of complex event
processing, as described in [5].

4.2.3. General language concepts

While the Communities, Policies and Events andeStat
aspects of BCL are used to express key conceptheof

Notification Creation Rule that generates an email
notification stating that the predefined threshblas
been exceeded giving adequate forewarning before
reaching the maximum.

State,MonthlyPurchaseOrderTotal, that maintains

a total of purchase orders drawn for each calendar
month. A new instance of each state is createdieat t
beginning of each month and each state is finaksetl
stored for statistical purposes.

Time Window,30DayPurchaseOrderThreshold,

that will trigger when a threshold number of puisda
orders is exceeded for any 30 day period. This lbeay
useful for statistically determining busy periods.

The sub-community templat®urchaseOrderTemplate

contracting domain we needed additional languageContains one policy:

constructs similar to typical programming
These support assignment of mathematical or logical
expressions to variables, control of loops, cooddi
constructs, and so on.

languages -

GoodslnsuredOverValueThreshold, verifying
that any purchase order that exceeds some threghold
insured.

This example expressed in pseudo BCL syntax is

included below.

4.3 BCL example

As an example to illustrate some of the BCL congept CommunityTemplate:

consider basic ‘draw-down’ (authorised purchaseegQrd
requests against a master agreement. The maseamagmt
defines an agreement between a purchaser and euppli
There is a maximum value of funds available fors thi
contract and the purchaser must ensure that totad-d
downs do not exceed the available funds reservethis
agreement. Any purchase order value over a prestefin
threshold must also be insured. In addition to maaimg
these specific contract clauses it would be deksrah be
able to monitor other activities to assist in mangghe
business.

In the following example there are a number of BCL
constructs defined to perform the following moriitgr
activities.

First,
downsMasterAgreement
master agreement,
PurchaseOrderTemplate,
individual purchase order.

The Draw-downsMasterAgreement ~ template includes
the expression of the following states and policies

Community Template Draw-
defines activities related to the
with a sub-community template,

to handle monitoring for each

e State, CumulativeTotalofAllPurchaseOrders.
to maintain a cumulative total of all purchaseswdra
down against this agreement.

» Policy verifying that the total reserved funds aat
exceededDrawDownFundsVerification

Draw-downsMasterAgreement id: 12345

InitialisationSpecification:
CreateMasterAgreementEvent

ActivationSpecification: StartDate

Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:

PurchaserCompanyName
SupplierCompanyName
StartDate

EndDate
MasterAgreementTotalFunds
InsuranceThreshold
PerCentOfTotalToNotify
MaxPurchaseOrdersPer30Days

Role:
Role:
Role:
Role:

DespatchOfficer
SupplierMasterAgreementManager
PurchaserMasterAgreementManager
PurchaseOrderOfficer

State: CumulativeTotalofAllPurchaseOrders
Initialisation: 0
CalculationExpression:
UpdateOn: PurchaseOrderEvent
UpdateSpecification:
PurchaseOrderCumulativeTotal +=
PurchaseOrderEvent.total
FinaliseOn: EndDate

Policy: DrawDownFundsVerification
Role: PurchaserMasterAgreementManager
Modality: Obliged
Condition: On PurchaseOrderEvent
verify
CumulativeTotalofAllPurchaseOrders
< MasterAgreementTotalFunds



NotificationCreationRule:
GenerateOn: if
CumulativeTotalofAllPurchaseOrders
>( PerCentOfTotalToNotify / 100
* MasterAgreementTotalFunds)

NotificationToGenerate:
Transport: email
To:
ContractManager@Company.net
From: BCASystem@xyz.com
Subject:
Master Agreement Notification
Message:
“Master Agreement
CommunityTemplate.id total
has risen above
PerCentOfTotalToNotify percent”

State: MonthlyPurchaseOrderTotal
InitialisationSpecification: 0
CalculationExpression:

UpdateOn: PurchaseOrderEvent
UpdateSpecification:
MonthlyPurchaseOrderTotal +=
PurchaseOrderEvent.total
FinaliseOn: EndOfMonthEvent
NewlnstanceOn: EndOfMonthEvent

TimeWindow: 30DayPurchaseOrderThreshold

TimePeriodSequence:
Width: 30 days
Step: 1 day

Do:

FindMatch:
EventSequence:
PurchaseOrderEvent
MaxOccurs:

MaxPurchaseOrdersPer30Days

CommunityTemplate: PurchaseOrderTemplate

InitialisationSpecification:
PurchaseOrderEvent

ActivationSpecification: IMMEDIATE

Policy: GoodsInsuredOverValueThreshold

Role: DespatchOfficer
Modality: Obligation
Condition:
If
PurchaseOrderEvent.total >
InsuranceThreshold
Then Insure goods

5.1 Executing BCL

As Figure 1 shows, the BCL definitions that comsét
contract models will follow closely the expressiaf
contract conditions stated in natural language. t&dr
example a statement of obligation will be of thenfo

<rol e> Purchaser

<Modal i ty> obligation

<behavi our > behavi our expressi on,

Here, the last term,behavi our expression, is
typically an event pattern, e.g. an event sequewbéch
needs to be satisfied in order for an obligation b
fulfilled. Notice that at this level the BCL deiiions will
consist mostly of community, policy and basic bebaw
expressions. However, considering that both pdiced

basic behaviour expressions consist of behaviour

constraints expressed in turn using event pat@ndsstates,
these BCL definitions will also include detailechbeassions
of event patterns and states. Thus, when defini@- B
models the first step is to specify communities palicies,
and these expressions will then be refined usingnev

patterns and states, and any other general language

constructs as described in section 4.

The semantic model for the execution of these Hehav
constraints is realised as part of the Businessvifyct
Monitoring (BAM), which can be distributed, if nesl

Contract in BCL
obligation prohibition Policies

Contract text
in
atural language

permission violation BCL
Definitions

event deadline .
A action -~ Basic
B stafé process Behaviour

Internal
Event BCA
Engine

Middleware

Figure 1: BCL Execution

Once the BCL descriptions are submitted to the BAM
engine this engine will respond to events as thepio As
the figure shows, there are different types of &vesuch as

In this section we explain how BCL is executed by a external events resulting from the actions of peopt
engine which is part of a broader contract managéme systems, temporal events such as timeouts or altgrn
architecture and we provide a brief description tlis generated events by the BAM engine. The executidhe
architecture. BAM does not distinguish the type of these eve@iigen,

5. Contract Monitoring Architecture



as part of a condition evaluation, the BAM engimeds to  The architecture components above represent the cor
access data from various enterprise repositoridgis T functionality needed for most contract management
monitoring design is quite generic and the BAM eegtan processes. Particular ECM systems may require iaddit

be used to monitor execution of any business a&gtivi components that can provide further value to thesitn
whether directly related to a legally binding cact; or as  makers in the contracting processes. Example<amgract
part of internal business processes. Enforcer, Contract Mediator and Arbitrator [14] and

Finally, this engine can run on any middlewarefprat ~ Contract Validitor [16]. The BCA architecture is ség

ECM is the use of Web Services standards. necessary.
5.2 Overall Business Contract Architecture éﬁ} Legond
f\\ ({ Message e
The contract monitoring facility is part of a largeCM = @ Data Access — —»

system, based on the Business Contract Architecture
initially proposed in [6] and further described [[@][14]
[15]. In brief, this architecture supports the fetintract life
cycle and consists of the following roles (Figuyd15]: T:m:;;‘;:s

* A Contract Repository, which stores standard caettra \-

templates, and if necessary standard contractesears L o

building blocks when drafting new contract tempdate &
. A Notary that stores ev_idenc_e of agreed contract e

instances (and their relationships as needed) after
. Data

contract has been negotiated to prevent any of the
parties repudiating it;

BCL Definitions
Commum!y Admi rator

Manager

Figure 2: Business contract architecture

* An Interceptor, providing non-intrusive interceptiof
business messages exchanged between trading partner
for further contract monitoring processing;

« BAM component, that performs the processing of
events obtained from the interceptor, management ofg Rl ated work
internal states related to the contract and actess
various enterprise data sources needed for policy
evaluation performed by the Contract Monitor
component;

Our work on BCL adopts a similar approach to theyea

work of Lee on electronic representation of cortgdd].

Lee proposed a logic model for contracting by cdesing

* A Contract Monitor, that performs the evaluation of their temporal, deontic and performative aspecBL Bs
contract policies, to determine whether parties’ developed from a different angle — the enterprisaetiing
obligations have been satisfied or whether theee ar considerations related to open distributed syste®us:
violations to the contract; this component makes approach, based on the ODP community concept [@] an
extensive use of the BAM component for event patter inspired by deontic formalisms, gives prominencettte
and state processing; it then sends appropriateproblem of defining enterprise policies as part of
messages to the Notifier component; organizational structures. We treat contracts gsoap of

« A Notifier, whose main task is to send human reab related policies that regulate inter-organizatiobasiness
notification messages to contract managers. Example activities and processes. In this respect we takemédar
are reminders about the tasks that need to bePProach to that of van den Heuvel and Weigand [#8p
performed, warnings that some violation event may developed a business contract specification largtatink

anse or a|arms that a V|o|at|on has a|ready haﬂben SpeCIflcatlonS Of WOkalOW SyStemS We COﬂSIdel‘tm‘tS
as the main coordination mechanism for the extended

enterprise and, considering possible non-compliance
situations, we provide architectural solutionstte problem
of monitoring the behaviour stipulated by a corttrdn
addition, this monitoring makes use of sophistidateent
processing machinery similar to that of Rapide lsue

(5]

A Community Manager, which allows the contract
administrator to make dynamic updates of roles,
policies and other community model elements; these
updates will need to be checked for their validityd
approved by the contract monitor and BAM
component.



Our event-oriented and declarative rule-based laggu [2]
design and the use of XML and Web Service standards[g]
have many similarities with BPEL specification [1Both
approaches express behaviour patterns — a maferedite
is that we provide more generic expression of biglayv
while BPEL concentrates on the business proces$s efy
expression.

(4]
(5]
(6]

7. Conclusionsand Future Work -

This paper presented our solution for contract
monitoring facility as part of an overall entergrisontract
management system. This solution is aimed at dgalith
business and legal aspects of contract. It is stepdy the
BCL language, designed specifically for the corttrac
domain and together with the BAM engine and oth€AB
components, the solution is suitable to supportssro
organisational ECM.

In the near future we plan to test our solutioa filot e-
business, e-government or e-commerce environmeis. T
would help us confirm the expressive power of the
language and its acceptability by contract domaipegs
and practitioners.

We also plan to explore the use of existing andrging
tools that support model-based development to niz@m
the cost of language maintenance. Another altammadi to
consider the suitability of high-level languages to [13]
implement BCL constructs. We will also employ eniegg
Web Services standards and technologies as they get
accepted, in particular the BPEL [17] and WSLA [18] [14]

Finally, we expect that some of the BCL ideas can b
used as part of OASIS legalXML e-contracts
standardization [20] .

(8]
(9]

(10]

(11]
(12]

[15]
8. Acknowledgements
1
The work reported in this paper has been fundguhit [16]
by the Co-operative Research Centre for Enterprise

Distributed Systems Technology (DSTC) through the
Australian Federal Government's CRC Programme
(Department of Industry, Science & Resources).

This project was supported by the Innovation Access[18]
Programme-International Science and Technology, an(1g]
initiative of the Government's Innovation Statement
Backing Australia's Ability.

(17]

[20]
9. References

(1]

R. Lee, A Logic Model for Electronic Contractinecision
Support Systemd, 27-44.

iMany, www.imany.com

DiCarta, www.dicarta.com

UpsideContracts, www.upsidecontract.com

D. Luckham,The Power of Eventéddison-Wesley, 2002

Z. Milosevic. Enterprise Aspects of Open Distributed
Systems PhD thesis, Computer Science Dept. The
University of Queensland, October 1995.

ISOMEC IS 15414, Open Distributed Processing-Emise
Language, 2002.

Oracle Contracts, http://www.oracle.com/appsnetpots/
contracts/content.html.

P. Linington, Z. Milosevic, J. Cole, S. Gibson,Kailkarni,

S. Neal, A unified behavioural model and a contract
extended enterprise, Data Knowledge and Engineering
Journal, Elsevier Science, to appear.

S. Neal, J. Cole, P. F. Linington, Z. Milosevic,&bson, S.
Kulkarni, Identifying requirements for Business Contract
Language: a Monitoring PerspectivdEEE EDOC2003
Conference Proceedings, Sep 03.

http://www.sarbanes-oxley.com/

D. Thomas, B. BarryModel Driven Development — the case
for domain oriented programmin@OPSLA’03 Companion
Proceedings, Oct.2003.

W-Jan van den Heuvel, H. Weigar@ross-Organisational
Workflow Integration using Contractd)ecision Support
Systems, 33(3): p. 247-265

Z. Milosevic, A. Josang, T. Dimitrakos, M.A. Patton
Discretionary Enforcement of Electronic Contrad®oc.
EDOC '02. pp(s): 39 -50. IEEE CS 2002

Z. Milosevic, P. Linington, J. Cole, S. Gibson,Kalkarni,
Inter-organizational collaborations supported by e-
contracts the IFIP I3E conference, Toulouse, France, 2004.

Z. Milosevic, D. Arnold, L. O’Connor dnter-enterprise
contract architecture for open distributed syster@scurity
requirements Proc. of WET ICE'96 Workshop on
Enterprise Security, Stanford, June 1996

www-106.ibm.com/developerworks/library/ws-bpel/

www.research.ibm.com/wsla/

WWW.0asis-open.org/committees/legalxml-
econtracts/charter.php

S. Ceri and P. FraternaliDesigning database
Aplicatoins with Objects and RulesThe IDEA
Methodology, Addison-Wesley, 1997




