

 1

On design and implementation of a contract monitoring facility

Z. Milosevic, S. Gibson, P. F. Linington∗, J. Cole, S. Kulkarni.

Distributed Systems Technology Centre,
University of Queensland,

Brisbane, QLD 4072, Australia.
{zoran, sgibson, colej,
sachink}@dstc.edu.au

∗University of Kent,
Kent, CT2 7NF, UK.

pfl@kent.ac.uk

Abstract

In this paper we present a solution to the problem of
designing and implementing a contract monitoring facility
as part of a larger cross-organisational contract
management architecture. We first identify key technical
requirements for such a facility and then present our
contract language and architecture that address key
aspects of the requirements. The language is based on a
precise model for the expression of behaviour and policies
in the extended enterprise and it can be used to build
models for a particular enterprise contract environment.
These models can be executed by a contract engine that
supports the contract management life cycle at both the
contract establishment and contract execution phases

Keywords: Contract Monitoring, Contract Language,
Contract Architecture

1. Introduction

Most interactions between business are conducted
according to the rules and policies stated in legally binding
agreements or contracts. Contracts specify obligations for
the signatories to the contract, as well as their permissions
and prohibitions, and may state penalties in cases where
these policies are violated. They may also state rewards for
outstanding performance.

In spite of the importance of contracts as a governance
mechanism for business collaborations there is currently
inadequate support for using contract information to
manage cross-organisational collaborations, including the
management of the contracts themselves. We refer to both
of these activities as enterprise contract management
(ECM). At present, ECM functionality ranges from manual

activities, such as regular checks of contracts stored in
filing cabinets, via the use of spreadsheets and databases to
record information about contracts, possibly including
simple notification triggers, to the more complex support as
part of Enterprise Resource Planning (ERP) systems.

Even in cases where there is electronic support for ECM,
the focus of these systems has been ‘inward’ – on internal
enterprise data and processes. However, the requirements of
the extended enterprise, which includes collaborative
arrangements between a company and its trading partners,
increasingly demand a more ‘outward’ perspective on
ECM. This would allow more transparency of the data,
processes and performance of trading partners in addition to
within the organization itself. Further, this needs to be done
in a real-time manner and with minimum latency for
information about partners’ data and behaviour.

In response to these demands, several vendors have
begun offering standalone ECM functionality that
increasingly supports the cross-organisational environment.
[2][3][4][8]. A common feature to all these products is their
aim to support full contract life cycle management. This
ranges from collaborative contract drafting and negotiation
(mainly exchanging electronic documents), via storage of
contracts and milestone-driven notifications, to analytic
features.

However, these systems generally follow the database
approach typical of most ERP systems and the contracts
semantics is implicitly encoded as part of various data and
processes. This is perhaps because there is currently a lack
of an overall model that expresses semantics of contracts as
a governance mechanism for cross-organisational
collaboration. In addition, the functionality of these systems
is focused primarily on one type of contract and is built
around the processes that accompany it, e.g. procurement
contracts, service contracts etc. This can be a limitation

 2

because organisations typically deal with various types of
contract with varying requirements and future ECMs should
be able to support multiple kinds of contract
simultaneously, as part of one system.

This paper presents our solution to the problem of
expressing contract semantics in a way that enables more
efficient and flexible ECM in the extended enterprise. This
consists of a contract language specifically developed for
the contracting domain and a contract engine that supports
common contract management activities. The language,
called the Business Contract Language (BCL) has a
particular focus on supporting event-based monitoring of
business activities associated with contracts. The engine is
based on our architecture model, the Business Contract
Architecture (BCA), initially proposed in [6]. The BCL is
used to express behaviour and constraints of specific
contracts and to design the corresponding specific contract
models. This, in combination with the contract engine,
which interprets these models, provides a basis for our
model based implementation approach.. It also enables
dynamic updates of the model to reflect new changes in
business rules and structures.

The paper begins (in section 2) with a discussion of
requirements for contract monitoring in a cross-
organisational environment. Section 3 provides an overview
of the community model, which is the foundation for BCL.
BCL is presented in section 4. Section 5 describes how
BCL is used in conjunction with our contract engine, based
on an contract architecture model, Business Contracts
Architecture (BCA). Section 6 describes related work and
section 7 summarises our approach and outlines direction
for our future work.

2. Contract monitoring requirements

One of the key phases in automated contract
management where a precise expression of contract
semantics is needed is contract monitoring. This is because
contract monitoring requires expression of the required
behaviour of the contract signatories. For example, the
required, or permitted, sequences of events that the
signatories are expected to exhibit in fulfilling their
obligations must be stated in the contract. Another example
is compliance with regulatory guidelines as for example
those related to the recent Sarbanes-Oxley Act [11] rules in
the USA. These requirements have implication for both the
contract language design and contract architecture
components.

Expressive contract language – a contract monitoring
language is required to check the past and current behaviour
associated with the execution of activities related to the
contract and ultimately the behaviour of the signatories to

the contracts. If the contract activities are reported using
events, then a language of high expressive power is needed
to cater for many possible relationships between such
events – which we call event patterns. Examples are
sequences of events and causal relations between two or
more events. The language should allow efficient
construction of the models that describe the structure of
entities associated with the contract and the processes in
which they are involved. Ideally, this language should
represent contract related concepts in a form that would
allow domain experts to enter contract related data to
support their contract management activities. In addition,
the language should allow entry of such information while
the system is in operation, including the addition of updates
to the existing models as needed. Our solution for such a
language is presented in section 4 and the way this
language is executed by the corresponding contract engine
is discussed in section 5.

In addition to the expressive monitoring language, one
also needs reliable event generation and reporting
mechanisms dealing with factors such as the accuracy of
the reported events and impact of the event generation
process and organizational threats from it. These issues
discussed in detail in [10] and are summarised here.

Accuracy of event reports – one of the challenges in
designing reliable monitoring systems arises from the
problem of maintaining a consistent view of time in
distributed systems. The implication of this is that there
may be some variability in the monitoring mechanism, e.g.
the ordering of events reported close together in time, or the
relative ordering of an event and a timeout for its receipt.
Thus, when designing the monitor, one may need to agree
an acceptable latitude for timings, taking into account the
knowledge of the properties of the infrastructure in use, and
of the contract details.

Performance issues – performance bottlenecks can arise
in situations when the monitoring is used on a large scale
and solutions need to be provided to deal with this, such as
the local processing of events to generate higher level
events and summary reports of activity.

Security issues – many security issues are associated
with the lack of absolute trust in e-contracting and in the
design of the monitoring mechanism it is important to
consider the trustworthiness of all the parts of the system.
This includes the trust of ECM system users, who need to
establish confidence in:

• an event reporting mechanism employed by the
monitor, which can be addressed by including a proof
of authenticity and a guarantee of non-repudiation in
the events;

 3

• a party who owns the monitor (possible choices are
trusted third party or an agent for one of the
participants);

• the components of the infrastructure they use, such as
repositories holding contract information;

• the monitoring system to preserve confidentiality of
information; an example is a requirement by a service
provider for the non-disclosure of their actual
performance.

A more detailed discussion about the issues of trust as
part of contract management and some initial solutions are
presented in [14].

Integration with other enterprise systems. One of the
requirements of an ECM is its ability to operate in
heterogeneous environments and to be relatively easily
integrated with other enterprise systems with minimal
disruption to the existing systems. One way of doing this is
using Web Service technology as an integration
mechanism.. In terms of monitoring, it is necessary to
provide as least intrusive mechanism as possible for
intercepting messages between parties and a possible
approach to this is to use an event listener/monitor, which
receives notifications of contract related behaviour from the
components using a publish/subscribe mechanism. Finally,
the use of open standards such as XML, Web Services and
OASIS legalXML e-contracts will allow deploying ECM
systems on various platforms.

3. Community model

Our approach for the expression of contract semantics is
based on the community model inspired by ODP standards
[7] and further refined in [9] [10].

A community is a configuration of objects defined to
express some common purpose or objective [7]. It is
introduced to capture the organizational structure of the
enterprise and the various constraints within it – which in
combination can be used to capture and specify common
reusable patterns of constraints.

This organizational structure is described in terms of
roles so that the structure is independent of the individual
objects representing actors and resources in the extended
enterprise. A community defines constraints on the
behaviour of these roles, and in any instance of the
community these roles are each filled by specific object
instances. Note that a community instance may have some
roles unfilled – and this is useful when modelling situations
when some organisational positions are vacant. In some
cases a community may place additional constraints on how
a single role is to be filled. For example, a separation of
duties requirement may be expressed by prohibiting a

pattern of role-filling in which two particular roles are filled
by the same object.

Typically, an extended enterprise is modelled as a
number of different communities to capture different
aspects of its behaviour and one object can fill roles in
different communities. For example, one object might be
fulfilling roles in a procurement process community, an
authorization community and an auditing community.

Community behaviour has two aspects. The first aspect
deals with the specification of basic behaviour [9], which. is
expressed in terms of a sequence of actions that are always
carried out by the parties filling the roles and various styles
of constraints on these actions, including temporal
constraints. An example is a sequence of actions that
characterize this community behavior. The second aspect
of community specification is concerned with defining the
bounds of reasonable behaviour and with expressing
preferred choices within them. This aspect covers modal
constraints, such as permissions, prohibitions or obligations
on the objects filling the roles, rather than giving a single
acceptable sequence of actions.

In general, the definition of a community in terms of a
set of roles allows great flexibility in deciding how the roles
are to be filled, leading to considerable flexibility for the
reuse of communities to express, for example, common
contract elements [15].

In addition to the construction of business rules by the
peer-to-peer composition of communities indicated above,
there can be hierarchical composition, so that a single role
in a high-level community is filled by an object that has
resulted from the definition of some smaller-scale
community. For example, a single role in confirming the
correctness of a tender in some bidding process might, in
detail, be filled by a community formed by a quality
assurance team [15].

Another structuring technique in the modelling of inter-
organizational processes is the definition of policies. The
main idea here is to acknowledge the fact that the structures
being defined are evolving, and to distinguish between parts
of the specification that are essential to the process being
described, and so cannot be varied without effectively
starting over again, and those parts that can be expected to
vary, either by local choice or by a foreseen process of
renegotiation. These circumscribed areas of variability are
the policies associated with the enterprise communities
[15].They can be expressed in modal terms, as obligations,
permissions, prohibitions, and authorisation. In an e-
contracting environment, policies can be a very powerful
tool for tailoring general contract behaviour to the specific
circumstances in which the contract instance is to operate.
A policy can be defined, for example, to indicate how the
progress from stage to stage is to be signalled, or how

 4

various kinds of foreseeable violations, such as late
payment, are to be acted upon.

Policies can also apply to control the extent to which the
structure of the contract can be allowed to evolve with time,
indicating, for example, whether the way objects fill roles
can be updated, or even whether the number of instances of
some general kind of role can be increased or decreased to
accommodate changing levels of interest, and if so whether
there is a specific limit to ensure a sensible quorum for the
activity [15].

For a more detailed description of the community
modelling see [8] [11].

4. Contract Language

This section presents the main features of our solution to
the monitoring requirements listed in section 2. This
solution, the BCL, is developed based on the precise
modelling concepts of a community model introduced
earlier.

4.1 Main characteristics

Domain specific BCL was developed to enable
expression of contract semantics – primarily for contract
monitoring purposes. In this respect, the BCL is a domain
specific language that introduces modelling abstractions
which correspond directly to the contract terms used in the
contract management domain. It allows the typically
unstructured text of contracts, stated in natural language to
be re-expressed in a structured form, which is amenable to
automated processing (see Fig. 1). BCL is aimed at, what is
in [12] referred to as ‘ultimate pair programming’, which
involves a domain expert and expert developer working
together,. We note, that the BCL concepts are generic in
nature and can be used to express monitoring of any
business activity within or across organisations, not only
those directly related to contracts. Although the BCL is
based on the precise community model and event pattern
semantics of [5] we note that there is currently no formal
mathematical underpinning to the language and this is an
area of future research.

Declarative– BCL is primarily a declarative language
whose notation allows the expression of contract domain
concepts in a manner close to the way domain experts
think. This allows the user to express explicitly their
intention, the what of the problem, while the language
processor takes care of the how. A BCL language
processor embodies the semantics of the language notation.
A small subset of BCL is imperative in nature and this
subset was developed as a supporting mechanism to the
declarative aspects of the language.

Event-driven – most of the BCL execution is triggered
by events. For example, states are update in response to
events, policy checking is triggered by events and
generation of internal events is driven by other events. The
event-driven characteristic of the language is an important
contributor to the declarative nature of the language. This
approach again facilitates the expression of what should be
done in response to some occurrence and the engine will
take care of detecting the occurrence and triggering the
execution.

Model-based - we follow a model-based philosophy to
ensure rapid and predictable development and deployment
for specific contracting environments. This entails the use
of:

• models to describe rules, structures and constraints of a
particular contracting environment by using BCL
modelling constructs; the models are used to
parameterize the contract framework described below

• an e-contract framework, which is a body of code that
implements the aspects that are common across the
entire contracting domain; this framework consists of i)
a pre-defined contract engine, which implements the
semantics of BCL processing and ii) other components
defined in BCA; the role of the BCL models is to
facilitate instantiation of specific contracting scenarios
using the generic contracting functionality provided by
the framework. Currently we use the J2EE platform to
implement our framework.

• templates to represent patterns of structure and
behaviour such as community modelling concepts
described in section 3.

BCL configuration models are used to parameterise the
framework, producing a specific contract management
system. This model-interpreter paradigm can be considered
as one specific style of model-driven development.

4.2 BCL modelling concepts

BCL language concepts can be grouped in three
categories, described in the order of higher level
abstractions to lower level of abstraction, .

4.2.1. Community and Policies

A set of BCL concepts that includes the definition of
communities and policies is introduced to define
organizational, basic behavioural and modal constraints
associated with contracts. These concepts constitute the
highest level of abstraction in the BCL as they directly map
onto the contracting domain - namely onto the terms
expressed in natural language expressions of contracts.

 5

Organizational constraints can be expressed using a
community model that specifies the roles involved in a
contract and their relationships, including hierarchical
relationships. The roles can represent organizations as part
of their collaboration governed by an overarching
community, representing the contract, or structures within
organizations so that it is possible to model internal
organisational relationships as well. In order to support the
notion of a contract template as a basis for the creation of
the corresponding contract instances we introduce the
concept of a community template and instantiation rules
that specify conditions for the creation of a contract, as
explained in the example in section 4.3.

Basic behavioural interactions between roles in a
contract express the ordering of their actions or steps in a
business process carried out by the signatories in a contract.
In BCL, most basic behaviour constraints are expressed
using event patterns as described in section 4.2.2.

Similarly, policies apply to the roles involved,
specifying refinement of their behavior, in particular modal
constraints such as obligations, rights, permissions,
prohibitions, accountability, authorizations and so on. As
with basic behaviour, policy conditions can be expressed in
terms of event patterns.

The main purpose of the community and policy set of
BCL concepts is to define collaborative arrangements
between parties. We note that, although the community and
policy aspects of the BCL were developed for the
contracting domain, they also have wider applicability such
as for example the description of internal policies within
organizations.

In order to support reuse of community definitions, we
define a community template which enables automated
support for the creation of community instances based on it.
Part of this template is the specification of an instantiation
rule which contains an event pattern which defining how to
create an instance and how to parameterise that instance

As with other aspects of BCL, these language
descriptions are stored in the Notary and will be used by the
Contract Monitor and Business Activity Monitoring (BAM)
engine to initiate contract monitoring activities. See section
5 for the details of these components.

4.2.2. Events and States

BCL concepts of Events and internal States are used to
describe detailed behaviour constraints included within
basic behaviour and policies associated with the community
models. These are fundamental behaviour concepts that can
be used for most Business Activity Monitoring (BAM)
applications, and are not related only to business contracts.
This group includes concepts for the expression of:

• event patterns - for detecting specific occurrences
related to the contract either as a single event or as
multiple events related to each other; events can result
from the actions of entities filling community roles,
can occur as a result of deadlines, or can be generated
within the system

• internal states and their changes in response to the
events;

• event types to be created as actions when certain
conditions have been matched, e.g. creation of contract
violation or contract fulfilment events; this is similar
approach as in Event-Condition-Action paradigm [20].

The purpose of BCL’s set of event and state related
concepts is to support real-time evaluation of the execution
of basic behaviour and policies as stated in the contract
with the aim of detecting contract violations or contract
fulfilments.

In terms of states, this evaluation can, for example,
consist of checking whether a certain internal state related
to a contract has occurred; an example might be detecting
whether the total number of cost-free withdrawals per
month has reached its maximum. We note that the changes
in state occur as a result of the corresponding events or
event patterns and that the concept of state covers both the
changes in the values of individual variables, such as total
number of transactions in this month, or the changes
associated with finite state machine transitions.

In terms of event patterns, the evaluation can involve
checking whether one or several events have occurred and
if so, we say that the event pattern is satisfied. In BCL an
event represents an occurrence of a certain type. An event
can be atomic or it can have a duration. In the case of
multiple events BCL provides a rich set of options for
expressing relationships between events, however their full
description is beyond the scope of this paper. We provide
representative examples of event pattern expressions [15]:

• Sequence of events - the event pattern is satisfied when
all the events have occurred in the order specified in
the sequence;

• Disjunction of events - the event pattern is satisfied
when any of the events have occurred;

• Conjunction of Events - this pattern is satisfied when
all the events have occurred;

• Quorum – this pattern is satisfied when a specified
number from the set of all events have occurred;

• Event Causality - the event pattern is satisfied when the
currently matched event has as its causal parent some
previously recognised event.

 A special kind of event pattern is introduced to allow
for the detection of certain conditions that need to be

 6

determined during some ‘sliding’ period of time. This event
pattern is called a sliding Time Window event pattern. The
time window is defined by the window’s width, the specific
condition that needs to be checked within that window (e.g.
maximum number of Purchase Order requests issued per
day), the expressions stating what to do when a condition is
found or is not found, and if, appropriate, how to move the
window forward.

The event pattern mechanism in BCL has many
similarities to the specification of complex event
processing, as described in [5].

4.2.3. General language concepts

While the Communities, Policies and Events and States
aspects of BCL are used to express key concepts of the
contracting domain we needed additional language
constructs similar to typical programming languages.
These support assignment of mathematical or logical
expressions to variables, control of loops, conditional
constructs, and so on.

4.3 BCL example

As an example to illustrate some of the BCL concepts,
consider basic ‘draw-down’ (authorised purchase order)
requests against a master agreement. The master agreement
defines an agreement between a purchaser and supplier.
There is a maximum value of funds available for this
contract and the purchaser must ensure that total draw-
downs do not exceed the available funds reserved for this
agreement. Any purchase order value over a predefined
threshold must also be insured. In addition to maintaining
these specific contract clauses it would be desirable to be
able to monitor other activities to assist in managing the
business.

In the following example there are a number of BCL
constructs defined to perform the following monitoring
activities.

First, Community Template Draw-
downsMasterAgreement defines activities related to the
master agreement, with a sub-community template,
PurchaseOrderTemplate, to handle monitoring for each
individual purchase order.

The Draw-downsMasterAgreement template includes
the expression of the following states and policies:

• State, CumulativeTotalofAllPurchaseOrders.
to maintain a cumulative total of all purchases drawn
down against this agreement.

• Policy verifying that the total reserved funds are not
exceeded, DrawDownFundsVerification

• Notification Creation Rule that generates an email
notification stating that the predefined threshold has
been exceeded giving adequate forewarning before
reaching the maximum.

• State, MonthlyPurchaseOrderTotal, that maintains
a total of purchase orders drawn for each calendar
month. A new instance of each state is created at the
beginning of each month and each state is finalised and
stored for statistical purposes.

• Time Window, 30DayPurchaseOrderThreshold,
that will trigger when a threshold number of purchase
orders is exceeded for any 30 day period. This may be
useful for statistically determining busy periods.

The sub-community template, PurchaseOrderTemplate
contains one policy:

• GoodsInsuredOverValueThreshold, verifying
that any purchase order that exceeds some threshold is
insured.

This example expressed in pseudo BCL syntax is
included below.

CommunityTemplate:
 Draw-downsMasterAgreement id: 12345

 InitialisationSpecification:
 CreateMasterAgreementEvent

 ActivationSpecification: StartDate

 Value: PurchaserCompanyName
 Value: SupplierCompanyName
 Value: StartDate
 Value: EndDate
 Value: MasterAgreementTotalFunds
 Value: InsuranceThreshold
 Value: PerCentOfTotalToNotify
 Value: MaxPurchaseOrdersPer30Days

 Role: DespatchOfficer
 Role: SupplierMasterAgreementManager
 Role: PurchaserMasterAgreementManager
 Role: PurchaseOrderOfficer

 State: CumulativeTotalofAllPurchaseOrders
 Initialisation: 0
 CalculationExpression:
 UpdateOn: PurchaseOrderEvent
 UpdateSpecification:
 PurchaseOrderCumulativeTotal +=
 PurchaseOrderEvent.total
 FinaliseOn: EndDate

 Policy: DrawDownFundsVerification
 Role: PurchaserMasterAgreementManager
 Modality: Obliged
 Condition: On PurchaseOrderEvent
 verify
 CumulativeTotalofAllPurchaseOrders
 < MasterAgreementTotalFunds

 7

 NotificationCreationRule:
 GenerateOn: if
 CumulativeTotalofAllPurchaseOrders
 >(PerCentOfTotalToNotify / 100
 * MasterAgreementTotalFunds)

 NotificationToGenerate:
 Transport: email
 To:
 ContractManager@Company.net
 From: BCASystem@xyz.com
 Subject:
 Master Agreement Notification
 Message:
 “Master Agreement
 CommunityTemplate.id total
 has risen above
 PerCentOfTotalToNotify percent”

 State: MonthlyPurchaseOrderTotal
 InitialisationSpecification: 0
 CalculationExpression:
 UpdateOn: PurchaseOrderEvent
 UpdateSpecification:
 MonthlyPurchaseOrderTotal +=
 PurchaseOrderEvent.total
 FinaliseOn: EndOfMonthEvent
 NewInstanceOn: EndOfMonthEvent

 TimeWindow: 30DayPurchaseOrderThreshold
 TimePeriodSequence:
 Width: 30 days
 Step: 1 day
 Do:
 FindMatch:
 EventSequence:
 PurchaseOrderEvent
 MaxOccurs:
 MaxPurchaseOrdersPer30Days

 CommunityTemplate: PurchaseOrderTemplate

 InitialisationSpecification:
 PurchaseOrderEvent

 ActivationSpecification: IMMEDIATE

 Policy: GoodsInsuredOverValueThreshold
 Role: DespatchOfficer
 Modality: Obligation
 Condition:
 If
 PurchaseOrderEvent.total >
 InsuranceThreshold
 Then Insure goods

5. Contract Monitoring Architecture

In this section we explain how BCL is executed by an
engine which is part of a broader contract management
architecture and we provide a brief description of this
architecture.

5.1 Executing BCL

As Figure 1 shows, the BCL definitions that constitute
contract models will follow closely the expression of
contract conditions stated in natural language text. For
example a statement of obligation will be of the form:

 <role> Purchaser
<Modality> obligation

<behaviour> behaviour expression,

Here, the last term, behaviour expression, is
typically an event pattern, e.g. an event sequence, which
needs to be satisfied in order for an obligation to be
fulfilled. Notice that at this level the BCL definitions will
consist mostly of community, policy and basic behaviour
expressions. However, considering that both policies and
basic behaviour expressions consist of behaviour
constraints expressed in turn using event patterns and states,
these BCL definitions will also include detailed expressions
of event patterns and states. Thus, when defining BCL
models the first step is to specify communities and policies,
and these expressions will then be refined using event
patterns and states, and any other general language
constructs as described in section 4.

The semantic model for the execution of these behaviour
constraints is realised as part of the Business Activity
Monitoring (BAM), which can be distributed, if needed.

BAM
Distributed

Engine

Action

Timeout

External
Event

Internal
Event

Enterprise
Data

BCL
Event

BCL
Definitions

Middleware

BCA
Engine

event deadline

action
process

obligation

permission

prohibition

violation

state

Policies

Basic
Behaviour

Contract text
in

Natural language

Contract in BCL

BAM
Distributed

Engine

Action

Timeout

External
Event

Internal
Event

Enterprise
Data

Enterprise
Data

BCL
Event

BCL
Definitions

Middleware

BCA
Engine

event deadline

action
process

obligation

permission

prohibition

violation

state

Policies

Basic
Behaviour

Contract text
in

Natural language

Contract in BCL

Figure 1: BCL Execution

Once the BCL descriptions are submitted to the BAM
engine this engine will respond to events as they occur. As
the figure shows, there are different types of events, such as
external events resulting from the actions of people or
systems, temporal events such as timeouts or internally
generated events by the BAM engine. The execution of the
BAM does not distinguish the type of these events. Often,

 8

as part of a condition evaluation, the BAM engine needs to
access data from various enterprise repositories. This
monitoring design is quite generic and the BAM engine can
be used to monitor execution of any business activity,
whether directly related to a legally binding contract, or as
part of internal business processes.

Finally, this engine can run on any middleware platform
and one obvious choice of value for cross-organisational
ECM is the use of Web Services standards.

5.2 Overall Business Contract Architecture

The contract monitoring facility is part of a larger ECM
system, based on the Business Contract Architecture
initially proposed in [6] and further described in [9][14]
[15]. In brief, this architecture supports the full contract life
cycle and consists of the following roles (Figure 2) [15]:

• A Contract Repository, which stores standard contract
templates, and if necessary standard contract clauses as
building blocks when drafting new contract templates;

• A Notary that stores evidence of agreed contract
instances (and their relationships as needed) after a
contract has been negotiated to prevent any of the
parties repudiating it;

• An Interceptor, providing non-intrusive interception of
business messages exchanged between trading partners
for further contract monitoring processing;

• BAM component, that performs the processing of
events obtained from the interceptor, management of
internal states related to the contract and access to
various enterprise data sources needed for policy
evaluation performed by the Contract Monitor
component;

• A Contract Monitor, that performs the evaluation of
contract policies, to determine whether parties’
obligations have been satisfied or whether there are
violations to the contract; this component makes
extensive use of the BAM component for event pattern
and state processing; it then sends appropriate
messages to the Notifier component;

• A Notifier, whose main task is to send human readable
notification messages to contract managers. Examples
are reminders about the tasks that need to be
performed, warnings that some violation event may
arise or alarms that a violation has already happened

• A Community Manager, which allows the contract
administrator to make dynamic updates of roles,
policies and other community model elements; these
updates will need to be checked for their validity and
approved by the contract monitor and BAM
component.

The architecture components above represent the core
functionality needed for most contract management
processes. Particular ECM systems may require additional
components that can provide further value to the decision
makers in the contracting processes. Examples are Contract
Enforcer, Contract Mediator and Arbitrator [14] and
Contract Validitor [16]. The BCA architecture is easily
configurable so that additional roles can be added as
necessary.

Monitor

Interceptor

BAM Engine

Community
Manager

Administrator

Purchasing

ERP System

Notary

Enforcer

Notifier

Contract
Manager

Enterprise
Data

Templates
Repository

Drafter

BCL Definitions

Data Access

Message

Legend

MonitorMonitor

InterceptorInterceptor

BAM EngineBAM Engine

Community
Manager

Community
Manager

Administrator

Purchasing

ERP System

NotaryNotary

EnforcerEnforcer

NotifierNotifier

Contract
Manager

Enterprise
Data

Enterprise
Data

Templates
Repository
Templates
Repository

Drafter

BCL DefinitionsBCL Definitions

Data Access

Message

Legend

Figure 2: Business contract architecture

6. Related work

Our work on BCL adopts a similar approach to the early
work of Lee on electronic representation of contracts [1].
Lee proposed a logic model for contracting by considering
their temporal, deontic and performative aspects. BCL is
developed from a different angle – the enterprise modelling
considerations related to open distributed systems. Our
approach, based on the ODP community concept [7] and
inspired by deontic formalisms, gives prominence to the
problem of defining enterprise policies as part of
organizational structures. We treat contracts as a group of
related policies that regulate inter-organizational business
activities and processes. In this respect we take a similar
approach to that of van den Heuvel and Weigand [13], who
developed a business contract specification language to link
specifications of workflow systems. We consider contracts
as the main coordination mechanism for the extended
enterprise and, considering possible non-compliance
situations, we provide architectural solutions to the problem
of monitoring the behaviour stipulated by a contract. In
addition, this monitoring makes use of sophisticated event
processing machinery similar to that of Rapide language
[5].

 9

Our event-oriented and declarative rule-based language
design and the use of XML and Web Service standards
have many similarities with BPEL specification [17]. Both
approaches express behaviour patterns – a major difference
is that we provide more generic expression of behaviour
while BPEL concentrates on the business process style of
expression.

7. Conclusions and Future Work

This paper presented our solution for contract
monitoring facility as part of an overall enterprise contract
management system. This solution is aimed at dealing with
business and legal aspects of contract. It is supported by the
BCL language, designed specifically for the contracting
domain and together with the BAM engine and other BCA
components, the solution is suitable to support cross-
organisational ECM.

In the near future we plan to test our solution in a pilot e-
business, e-government or e-commerce environment. This
would help us confirm the expressive power of the
language and its acceptability by contract domain experts
and practitioners.

We also plan to explore the use of existing and emerging
tools that support model-based development to minimize
the cost of language maintenance. Another alternative is to
consider the suitability of high-level languages to
implement BCL constructs. We will also employ emerging
Web Services standards and technologies as they get
accepted, in particular the BPEL [17] and WSLA [18].

Finally, we expect that some of the BCL ideas can be
used as part of OASIS legalXML e-contracts
standardization [20] .

8. Acknowledgements

The work reported in this paper has been funded in part
by the Co-operative Research Centre for Enterprise
Distributed Systems Technology (DSTC) through the
Australian Federal Government's CRC Programme
(Department of Industry, Science & Resources).

This project was supported by the Innovation Access
Programme-International Science and Technology, an
initiative of the Government's Innovation Statement,
Backing Australia's Ability.

9. References

[1] R. Lee, A Logic Model for Electronic Contracting, Decision
Support Systems, 4, 27-44.

[2] iMany, www.imany.com

[3] DiCarta, www.dicarta.com

[4] UpsideContracts, www.upsidecontract.com

[5] D. Luckham, The Power of Events, Addison-Wesley, 2002

[6] Z. Milosevic. Enterprise Aspects of Open Distributed
Systems. PhD thesis, Computer Science Dept. The
University of Queensland, October 1995.

[7] ISO\IEC IS 15414, Open Distributed Processing-Enterprise
Language, 2002.

[8] Oracle Contracts, http://www.oracle.com/appsnet/products/
contracts/content.html.

[9] P. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni,
S. Neal, A unified behavioural model and a contract for
extended enterprise, Data Knowledge and Engineering
Journal, Elsevier Science, to appear.

[10] S. Neal, J. Cole, P. F. Linington, Z. Milosevic, S. Gibson, S.
Kulkarni, Identifying requirements for Business Contract
Language: a Monitoring Perspective, IEEE EDOC2003
Conference Proceedings, Sep 03.

[11] http://www.sarbanes-oxley.com/

[12] D. Thomas, B. Barry, Model Driven Development – the case
for domain oriented programming, OOPSLA’03 Companion
Proceedings, Oct.2003.

[13] W-Jan van den Heuvel, H. Weigand, Cross-Organisational
Workflow Integration using Contracts, Decision Support
Systems, 33(3): p. 247-265

[14] Z. Milosevic, A. Josang, T. Dimitrakos, M.A. Patton –
Discretionary Enforcement of Electronic Contracts. Proc.
EDOC '02. pp(s): 39 -50. IEEE CS 2002

[15] Z. Milosevic, P. Linington, J. Cole, S. Gibson, S. Kulkarni,
Inter-organizational collaborations supported by e-
contracts, the IFIP I3E conference, Toulouse, France, 2004.

[16] Z. Milosevic, D. Arnold, L. O’Connor - Inter-enterprise
contract architecture for open distributed systems: Security
requirements. Proc. of WET ICE’96 Workshop on
Enterprise Security, Stanford, June 1996

[17] www-106.ibm.com/developerworks/library/ws-bpel/

[18] www.research.ibm.com/wsla/

[19] www.oasis-open.org/committees/legalxml-
econtracts/charter.php

[20] S. Ceri and P. Fraternali, Designing database
Aplicatoins with Objects and Rules, The IDEA
Methodology, Addison-Wesley, 1997

