

INTER-ORGANISATIONAL COLLABORATIONS
SUPPORTED BY E-CONTRACTS

Z. Milosevic1, P.F. Linington2, S.Gibson1, S. Kulkarni1 and J.Cole1
1Distributed Systems Technology Centre, The University of Queensland, Brisbane, QLD
4072, Australia; 2University of Kent, Canterbury, Kent, CT2 7NF, UK.

Abstract: This paper presents a model for describing inter-organizational collaborations
for e-commerce, e-government and e-business applications. The model,
referred to as a community model, takes into account internal organizational
rules and business policies as typically stated in business contracts that govern
cross-collaborations. The model can support the development of a new
generation of contract management systems that provide true inter-
organizational collaboration capabilities to all parties involved in contract
management. This includes contract monitoring features and dynamic updates
to the processes and policies associated with contracts. We present a blueprint
architecture for inter-organizational contract management and a contract
language based on the community model. This language can be used to
specialize this architecture for concrete collaborative structures and business
processes.

Key words: Community Model, Contract Specification, Contract Monitoring, Business
Contract Language

 Z. Milosevic, P.F. Linington, S.Gibson, S. Kulkarni and J.Cole

1. INTRODUCTON

Business contracts are the key governing mechanism for inter-
organizational collaborations and they are increasingly taking a central role
in e-commerce, e-business and e-government applications. This is driven
mostly by business demands for more transparent, cost efficient and
accountable processes and for the preservation of corporate knowledge
associated with contract-related procedures and artifacts. As a result, there is
a need for a new generation of contract management systems that go beyond
the intra-enterprise contracting focus as typically supported by today’s

Enterprise Resource Planning (ERP) systems or even more frequently, by

numerous spreadsheets or simple databases that many organizations use to

record their contract information. Increasingly, organizations require new

contract management capabilities to facilitate collaborative aspects in cross-

organizational arrangements – to enable better insight into capabilities,

activities and performance of their partners.

This paper presents our generic contract architecture solution for building

a new generation of contract management systems. This solution makes use

of Web Services to support the cross-organizational nature of collaborations

and to integrate contract management services into the overall business

processes between organizations. The solution consists of:

• a repository of contracts to provide access to contract related information

such as start and end date of contract, the status of contracts, parties

involved as well as relationships between contracts;

• a contract monitoring facility that performs checking of the fulfillment of

obligations and compliance monitoring;

• a contract notification component that sends various contract

notifications to the parties involved in contract management;

• other components and facilities to support contract negotiations,

enforcement and also dynamic configurations of the system to reflect

new business rules and structures

This architecture can be regarded as a blueprint architecture for contract

management. Its full potential can be achieved by having a powerful contract

language that is used to configure the architecture for a particular contract

arrangement. In the paper we also present our Business Contract Language

(BCL) developed to support such configuration. The BCL expresses the

semantics of contracts although it can be applied to express many other

enterprise policies and collaborative arrangements. Essentially, BCL is a

domain specific language developed for the contracting domain and can be

used to express concrete models for specific contracting environments. Our

approach follows the model-driven development philosophy which is

INTER-ORGANISATIONAL COLLABORATIONS SUPPORTED BY
E-CONTRACTS

currently being proposed by the Object Management Group (OMG) Model-
Driven Architecture (MDA).

The next section provides the description of the community model that
provides a basis for describing cross-organizational collaborations. We then
present our architectural model for cross-organizational contract
management. This is followed by an overview of the business contract
language that we developed to support contract monitoring capabilities and
an example of a procurement related contract to illustrate this language. The
paper concludes with a list of open issues and future research directions.

2. MODELLING OF INTER-ORGANIZATIONAL
COLLABORATIONS

Web Services provide a way to integrate applications running across the
Internet and are well suited to support cross-organizational interactions.
However, collaborative arrangements require the capability to express the
business rules and constraints of each enterprise and the rules/constraints of
engagement with other enterprises – which is an abstraction layer above

Web Services. These rules, be they organizational structure rules, business

process rules or enterprise policies, together constitute an enterprise model

for collaboration. With emerging tools that support model-driven

development it will be increasingly possible to use such an enterprise model

to generate collaborative applications that can run on top of any middleware

infrastructure, including Web Services. The power of a model-driven

approach derives from the ability to flexibly and efficiently add new

business rules or modify existing ones.

In this paper we present one such enterprise model, a community model,

which was developed based on the ODP standards
1,2

. The aim of this model

is to capture, in an object based way, the organizational structure of the

enterprise and the various localized constraints within it. The community is

the basic element of specification, and so is the element used to capture

common reusable patterns of constraints
3
.

A community is a configuration of objects defined to express some

common purpose or objective
1
. It is decoupled from the individual objects

representing actors and resources in the distributed enterprise by the use of

the role concept. A community defines constraints on the behaviour of the

roles it declares, and in any instance of the community these various roles

are each filled by particular objects. By forcing its member objects to honour

the constraints defined for the roles they fill, the community progresses its

objectives. A number of separate communities can be defined to capture

 Z. Milosevic, P.F. Linington, S.Gibson, S. Kulkarni and J.Cole

different aspects of the community behaviour, so that a particular object
might be fulfilling roles in a business process community, a security
management community and an auditing community; the result is an
enterprise with behaviour satisfying all the different aspects.

The behaviour defined for a community can include, but is not limited to,
simple sequences of algorithmic steps. Much of the behaviour specification
is concerned with defining the bounds of reasonable behaviour and
expressing preferred choices within them. Because of this, many of the
constraints are modal in nature, expressing permissions, prohibitions or
obligations on the objects filling the roles, rather than giving a single
acceptable sequence of actions.

In general, however, the definition of a community in terms of a set of
roles allows great flexibility in deciding how the roles are to be filled,
leading to considerable flexibility for the reuse of communities to express,
for example, common contract elements. However, in some cases a
community may also place additional constraints on how a role is to be
filled. For example, a separation of duties concern may be expressed by
prohibiting a pattern of role-filling in which two particular roles are filled by
a single object.

In addition to the construction of business rules by the parallel
composition of communities indicated above, there can be hierarchical
composition, so that a single role in a high-level community is filled by an
object that has resulted from the definition of some smaller-scale
community. For example, a single role in confirming the correctness of a
tender in some bidding process might, in detail, be filled by a community
formed by a quality assurance team.

Another structuring technique in the modeling of inter-organizational
processes is the definition of policies. The main idea here is to acknowledge
the fact that the structures being defined are organic and evolving, and to
distinguish between parts of the specification that are essential to the process
being described, and so cannot be varied without effectively starting over
again, and those parts that can be expected to vary, either by local choice or
by a foreseen process of renegotiation. These circumscribed areas of
variability are the policies associated with the enterprise communities. In an
e-contracting environment, policies can be a very powerful tool for tailoring
general contract behaviour to the specific circumstances in which the
contract instance is to operate. A policy can be defined, for example, to
indicate how the progress from stage to stage is to be signaled, or how
various kinds of foreseeable violations, such as late payment, are to be acted
upon.

Policies can also be defined to control the extent to which the structure of
the contract can be allowed to evolve with time, indicating, for example,

INTER-ORGANISATIONAL COLLABORATIONS SUPPORTED BY
E-CONTRACTS

whether the way objects fill roles can be updated, or even whether the
number of instances of some general kind of role can be increased or
decreased to accommodate changing levels of interest, and if so whether
there is a specific limit to ensure a sensible quorum for the activity.

The community specifications discussed here are templates, in the ODP
sense, in that they are generally parameterised, and that they are used to
create community instances by applying a set of instantiation rules derived
from the context of the creation action; the term template is used in this
paper to highlight the distinction from the more neutral term model.

A more detailed description of community model is described in our
earlier paper3 and also in our recent publication4.

3. BLUEPRINT CONTRACT ARCHITECTURE

3.1 Extended Enterprise: role of contracts

Inter-organizational collaborations in the extended enterprise increasingly
require tighter electronic links between organizations while preserving their
individual processes and practices as an element of their competitiveness.
This means that organizations are to be involved in cross-organisational
business processes but the nature of such processes is different from the
nature of internal business processes.

In the cross-organisational space the emphasis is on coordinating
message exchanges sent between organizations that typically carry business
documents, as shown in Figure 1. Messages can be created as a result of
various events, such as actions of objects filling roles, deadlines events or
arrival of other messages. Here, there is no centralized engine that
coordinates message transfer – rather every organization implements its own

decision logic about how to process incoming messages, what internal

activity is to be carried out and where and when to send outgoing messages.

There are several standardization activities that are attempting to define how

Web Services can be used in the cross-organisational business process

context such as BPEL
5
. We note that the focus of internal processes is

primarily on the control flow and data flow between tasks in a business

process.

Contracts are the key mechanisms to govern cross-organisational

collaboration. From a legal point of view contracts state what obligations,

permission, or prohibitions parties have in respect to each other and what

actions are to be undertaken in cases of contract violation, either as a result

 Z. Milosevic, P.F. Linington, S.Gibson, S. Kulkarni and J.Cole

of a contract breach or due to circumstances in which force majeure is
applied.

The legal jargon in contracts can to some extent be mapped onto a
number of more formalized modeling concepts which can be used to
facilitate integration of the contracts with cross-organisational business
processes and other enterprise systems. However, this mapping is a non-
trivial problem and in this paper we present our solution for expressing
contracts in terms of modeling concepts suitable for supporting automation
in cross-organisational collaborations. These modeling concepts are based on
the community model introduced in section 2, and can be grouped in three
broad categories:
• expression of roles and their relationships as part of a contract; roles can

then be included as part of the basic behavior concepts and policies listed
below

• expressions of basic behaviour, e.g. a set of actions carried out by the
parties filling the roles and being involved in business transactions and
various styles of constraints on these actions including temporal
constraints;

• expressions of policies such as obligations, permissions and prohibitions
as refinement of basic behaviour; both policies and basic behaviour
expressions use more primitive behaviour expressions such as states,
events and event relationships

Extended Enterprise

Event

Enterprise

Message Action

Internal
Process

Deadline

event deadline
action

process

Cross-Org.
Process obligation

permission
prohibition

violation

state

Policies

Basic
Behaviour

Extended EnterpriseExtended EnterpriseExtended Enterprise

EventEvent

EnterpriseEnterpriseEnterprise

MessageMessageMessage ActionActionAction

Internal
Process
Internal
Process

DeadlineDeadlineDeadline

event deadline
action

process

Cross-Org.
Process

Cross-Org.
Process obligation

permission
prohibition

violation

state

Policies

Basic
Behaviour

Figure 1. Contracts and cross-organisational interactions

The electronic representation of contract templates can be stored in
appropriate repositories and it can be used either for accessing and

INTER-ORGANISATIONAL COLLABORATIONS SUPPORTED BY
E-CONTRACTS

navigating information related to a contract or for real-time monitoring of
contract execution. The latter includes monitoring of events that are
occurring (or not occurring) as part of business transactions carried out in the
related enterprise systems, such as e-procurement, payment systems and so
on.

3.2 Contract architecture components

To support the full contract life cycle and satisfy the most common
contract management procedures we propose a minimum number of
architectural components that can be deployed either within one or more
collaborative organizations or as a stand-alone system. This Business
Contract Architecture (BCA), originally proposed by Milosevic6, consists of
the following core components (see Figure 2).

Monitor

Interceptor

BAM Engine

Community
Manager

Administrator

Purchasing

ERP System

Notary

Enforcer

Notifier

Contract
Manager

Enterprise
Data

Templates
Repository

Drafter

BCL Definitions

Data Access

Message

Legend

MonitorMonitor

InterceptorInterceptor

BAM EngineBAM Engine

Community
Manager

Community
Manager

Administrator

Purchasing

ERP System

NotaryNotary

EnforcerEnforcer

NotifierNotifier

Contract
Manager

Enterprise
Data

Enterprise
Data

Templates
Repository
Templates
Repository

Drafter

BCL DefinitionsBCL Definitions

Data Access

Message

Legend

Figure 2. Business Contract Architecture blueprint

• A Contract Repository, which stores standard contract forms (or contract
templates), and if necessary standard contract clauses that can be used as
building blocks when drafting new contract templates; there are several
deployment options for the Contract Repository role – it can be deployed

 Z. Milosevic, P.F. Linington, S.Gibson, S. Kulkarni and J.Cole

within either or both of the trading partners or it can be owned by a
trusted third-party authority;

• A Notary that stores evidence of agreed contract instances after a contract
has been negotiated to prevent any of the parties repudiating it; this
component can also store relationships between contracts as necessary;

• An Interceptor, whose purpose is to provide non-intrusive interception of
specific messages exchanged between business parties so that they can
be further processed for contract monitoring purposes; this is a plug-in
component allowing integration with any enterprise system and will vary
from one implementation to another, as it implements different message
protocols;

• A Business Activity Monitoring (BAM) component, which facilitates the
processing of events obtained from the interceptor, managing internal
states related to the contract and access to various enterprise data needed
for policy evaluation performed by the Contract Monitor component; we
note that this component represents an extension of the original BCA in
order to enable more powerful event-based monitoring capability;

• A Contract Monitor, that performs the evaluation of contract policies, to
determine whether parties’ obligations have been satisfied or whether

there are violations to the contract; this component makes extensive use

of the BAM component for event pattern and state processing; it then

sends appropriate messages to the Notifier component mentioned below;

• A Contract Notifier, whose main task is to send notification messages

(human readable format) to contract managers such as reminders about

the tasks that need to be performed, warnings that some violation event

may arise or alarms that a violation has already happened;

• A Contract Enforcer, which can perform some corrective measures such

as preventing further transactions if some violation has been detected.

The architecture components above represent core functionality needed

for most contract management processes. A contract architecture can also

have additional components that can provide further value to the decision

makers in the contracting processes such as:

• Contract mediator and arbitrator roles that can be used for discretionary

contract enforcement capabilities
7
. The contract mediator essentially

collects evidence of parties’ behaviour according to the contract. In case

of some dispute it can be used as an intermediary to assist the signatories

to the contract in determining a future course of corrective actions to

ensure contract compliant behaviour. A contract arbitrator can be used in

conjunction with a contract mediator as a party that makes decisions

about who is at fault (just as judges make their decisions) and whose

decisions must be obeyed by a party determined to be at fault. These two

INTER-ORGANISATIONAL COLLABORATIONS SUPPORTED BY
E-CONTRACTS

roles are to be used as an alternative or in combination with the non-
discretionary enforcement capabilities of a contract enforcer;

• A Contract negotiator, which is a role that facilitates negotiation between
contracting parties, possibly as a third party mediator that might have
access to business information of relevance for future contracts, and
which is not accessible to either of the parties;

• A Contract validitor which can perform a range of activities to ensure
that a contract that is being negotiated is valid; this can include checking
consistency of contracts8, or checking the competence aspect of a
contract9;

• A Contract performance repository, that stores various information of
relevance to the performance of parties to the contract and that can be
used when future contracts are to be negotiated;

• A Contract approval manager, which ensures that only parties with
corresponding privileges can execute actions governed by a contract such
as role-based or price-based purchase order issuance;

• A Community manager, which allows the contract administrator to make
dynamic updates of roles, policies and other community model elements;
these updates will need to be checked for their validity and approval by
the contract monitor and BAM component.

Our architecture is easily configurable so that additional roles can be

added as necessary.
Thus, BCA identifies the main components involved in contract creation,

execution and monitoring, but it leaves great flexibility in the way
responsibilities can be assigned to organizational units. For example, the
trust model associated with the monitor will vary depending on whether
there is first, second or third party monitoring. Similarly, the event
management infrastructure may be associated with the participants or run by
a trusted third party, and this will alter the way that events are analysed.

We note that in the inter-organizational setting these components can be
integrated using Web Services technologies. For example, in our prototype
the back-end system for Contract Repository and Notary are implemented
using IBM Web Sphere platform and the front-end for manipulating and
viewing data in the repositories is implemented using Microsoft’s ASP.Net

technology.

 Z. Milosevic, P.F. Linington, S.Gibson, S. Kulkarni and J.Cole

4. BUSINESS CONTRACT LANGUAGE CONCEPTS

The Business Contract Language (BCL) currently under development4,10
is aimed at describing contract semantics for the purpose of automating
contract management activities. Although BCL covers the structural aspects
of contracts, describing their composition in terms of contract clauses and
sub-clauses, in this paper we concentrate on the part of BCL that is
concerned with support for the automation of contract monitoring during
contract execution, i.e. after a contract is agreed and the fact stored in the
Notary. This automation is aimed at supporting various contract
management roles during a contract’s lifetime in their activities and

decision-making.

BCL is a domain language specifically developed to express contract

conditions needed for contract monitoring and to some extent contract

enforcement. BCL is a largely declarative language with a minimum number

of imperative fragments. BCL interpreter is embedded as part of the BAM

and contract monitor components of which implementation details are

beyond the scope of this paper.

The BCL language concepts can be grouped in three categories as

described next and shown in the figure below:

G e n e r a l la n g u a g e c o n s t r u c ts

E v e n ts a n d S ta te s

C o m m u n i t y a n d P o l ic ie s

G e n e r a l la n g u a g e c o n s t r u c ts

E v e n ts a n d S ta te s

C o m m u n i t y a n d P o l ic ie s

Figure 3. Business contract language modeling concepts

4.1 Community and Policies

BCL concepts related to communities and policies define organizational,

basic behavioural and modal constraints that apply to inter-organisational

interactions. Of all of the BCL concepts they are closest to the domain of

contracting as they resemble natural language terms and expressions used in

contracts.

Organizational constraints can be expressed using a community model

that specifies the roles involved in a contract and their relationships,

INTER-ORGANISATIONAL COLLABORATIONS SUPPORTED BY
E-CONTRACTS

including hierarchical relationships (through the notion of a nested
community or sub-community). The roles can represent organizations as part
of their collaboration governed by a larger community, viz contract, or
structures within organizations so that it is possible to model internal
relationships as well. In order to support the notion of a contract template as
a basis for the creation of the corresponding contract instances we introduce
the concept of a community template and instantiation rules that specify
condition for the creation of contract, as explained in the example below.

Basic behavioural interactions between roles in a contract express the
ordering of their actions or steps in a business process carried out by the
signatories in a contract. In BCL most basic behaviour constraints are
expressed using event patterns as described in section 4.2. Similarly, policies
apply to the roles involved specifying refinement of their behavior, in
particular modal constraints such as obligations, rights, permissions,
prohibitions, accountability, authorizations and so on. As with basic
behaviour, policy conditions can be expressed in terms of event patterns.

The main purpose of this group of concepts is to define collaborative
arrangements between parties. We note that, although community and policy
aspects of the BCL language are developed for the contracting domain, they
also have wider generality such as for example the description of internal
policies within organizations.

As with other aspects of BCL, these language descriptions are stored in
the Notary and will be used by the Contract Monitor and BAM engine to
initiate contract monitoring activities.

4.2 Events and States

BCL concepts covering the definitions of Events and internal States are
used to describe detailed behaviour constraints that are used as part of
community and policy descriptions in the community model. These are
fundamental behaviour concepts that can be used for most Business Activity
Monitoring (BAM) applications, and are not related only to business
contracts. This group includes concepts for the expression of:
• event patterns which are to be used to detect certain occurrences related

to the contract either as a single event or as multiple events related to
each other;

• internal states and their changes in response to the events;
• event types to be created when certain conditions have been matched, e.g.

creation of contract violation or contract fulfilment events

 Z. Milosevic, P.F. Linington, S.Gibson, S. Kulkarni and J.Cole

The purpose of BCL’s event and state concepts is to support real-time

evaluation of the execution of basic behaviour and policies as stated in the

contract with the aim of detecting contract violations or contract fulfillments.

In terms of states, this evaluation can, for example, consist of checking

whether a certain internal state related to a contract has been reached, such

as detecting whether the total number of cost-free withdrawals per month has

reached its maximum.

In terms of events, the evaluation can also involve checking whether one

or several events have occurred. In BCL an event represents an occurrence

of a certain type. An event can be atomic or it can have a duration. In the

case of multiple events the BCL provides a rich set of options for expressing

relationships between events, namely event patterns. BCL provides a rich set

of event pattern expressions and their full description is beyond the scope of

this paper. We provide here some examples of event pattern expressions:

• Sequence of events - the event pattern is satisfied when all the events

have occurred in the order specified in the sequence

• Disjunction of events - the event pattern is satisfied when either of the

events have occurred

• Conjunction of Events - this pattern is satisfied when all the events have

occurred

• Quorum – this pattern is satisfied when a specified number from the set

of all events have occurred

• Event Causality - the event pattern is satisfied when the currently

matched event is causally derived from a specific preceding event.

 A special kind of event pattern is introduced to allow for the detection

of certain conditions that need to be determined during some ‘sliding’ period

of time. This event pattern is called a sliding Time Window event pattern.

The time window is defined by the window’s width, the specific condition

that needs to be checked within that window (e.g. maximum number of PO

requests issued per day), the expressions stating what to do when a condition

is found or is not found, and if, appropriate, how to move the window

forward.

The event pattern mechanism in BCL has many similarities to the

specification of complex event processing
13

. Most of the event pattern

language concepts are implemented as part of the BAM component. This

component uses event subscription mechanism to listen for the events

generated either by external system (through the Interceptor component) or

internally from within BCA (e.g. timeout events). Some of the events would

require further processing such as the evaluation of policies by the Monitor

or creation of new events by an Event Condition Action mechanism. The

flexibility of our design and implementation comes from the fact that the

interceptor can subscribe to any events such as the events generated by

INTER-ORGANISATIONAL COLLABORATIONS SUPPORTED BY
E-CONTRACTS

sending and receiving of messages in the cross-organizational settings, either
initiated by machines or by humans.

4.3 General language concepts

While the Communities, Policies and BAM aspects of BCL are used to
express key concepts of the contracting domain we needed additional
language constructs familiar in most programming languages to support
assignment of mathematical or logical expressions to variables, control of
loops, conditional constructs, and so on.

5. EXAMPLE: E-PROCURMENT SCENARIO

Consider a simple e-procurement scenario that focuses on a process
around the issue of a purchase order (PO) and dispatch of the requested
goods. A community template is defined to describe this cross-organisational
behaviour involving purchaser and supplier roles, and this may be specified
in an umbrella contract.

The contract clauses outline the following behaviour fragments:
• Purchaser is obliged to issue the PurchaseOrder whose integrity must be

correct with regard to quantities and pricing.
• Once a PurchaseOrder is received then the goods must be dispatched

within some number of days of receiving the purchase order.
• Payment must then follow within so many days of the goods being

dispatched.
• If the total of the purchase order is above some threshold then the goods

must also be insured.
• Once a cumulative total of purchase orders is reached some discount may

then be applied.
This example has been kept simple for reasons of brevity. Realistically it

should be extended to handle other likely possibilities such as partial
payment and delivery, shipping problems and a plethora of other atypical but
possible events and scenarios.

We first introduce a contract template that corresponds to this e-
procurement umbrella contract. Since we have defined only a template then
the actual values must be defined during some negotiation phase to create a
contract instance. These values will include the roles involved, durations for
dispatch and payment and thresholds for insurance and discounts. We
provide a community instantiation rule that specifies the event which will
trigger creation of a community instance. Note that we also define an

 Z. Milosevic, P.F. Linington, S.Gibson, S. Kulkarni and J.Cole

activation rule to specify a condition after which this contract (i.e.
community instance) may start to be monitored say for the purpose of
checking whether the above policies are satisfied.

This example also involves the definition of a nested sub-community for
each purchase order (PO) in order to handle monitoring for each individual
PO instance separately. Note that the example also shows our policy
expressions which follow the spirit of deontic constraints and that some
policies are defined in the context of a main community and others as part of
a sub-community. We also show how the internal states to the contract are
expressed and updated in response to events. This example expressed in
pseudo BCL syntax is included below.

CommunityTemplate: E-Procurement

 InitialisationSpecification:
 CreateE-ProcurementContractEvent

 ActivationSpecification: StartDate

 Role: Purchaser
 Role: Supplier
 Value: StartDate
 Value: DespatchThreshold
 Value: PaymentThreshold
 Value: InsuranceThreshold
 Value: DiscountThreshold
 Value: PurchaseOrderCumulativeTotal

 Policy: POverification
 Role: Purchaser
 Modality: Obligation
 Condition: On POEvent verify content

 State: CumulativePoTotal
 InitialisationSpecification: 0
 CalculationExpression:
 POCumulativeTotal += POEvent.total

 --- Purchase order sub-community defined below -

 CommunityTemplate: PO
 InitialisationSpecification: POEvent

INTER-ORGANISATIONAL COLLABORATIONS SUPPORTED BY
E-CONTRACTS

 ActivationSpecification: OnInitialisation
 EventPattern: GoodsDespatchDeadlineEvent
 GenerateOn:
 POEvent + DespatchThreshold DAYS

 Eventpattern: PaymentDeadlineEvent
 GenerateOn: GoodsDespatchEvent
 + PaymentThreshold DAYS

 Policy: GoodsDespatchWithinThresholdPeriod
 Role: Supplier
 Modality: Obligation
 Condition: GoodsDespatchEvent
 BEFORE GoodsDespatchDeadlineEvent

 Policy: PaymentMadeWithinThresholdPeriod
 Role: Purchaser
 Modality: Obligation
 Condition: PaymentEvent
 BEFORE PaymentDeadlineEvent

 Policy: GoodsInsuredOverValueThreshold
 Role: Supplier
 Modality: Obligation
 Condition:
 If PurchaseOrderEvent.total GREATERTHAN
 InsuranceThreshold
 Then Action (Insure Goods)

 Policy: ApplyDiscountOverCumulativeTotal
 Role: Supplier
 Modality: Obligation
 Condition:
 IfPurchaseOrderCumulativeTotal GREATERTHAN
 DiscountThreshold
 Then
 Action (Apply discount to goods)

Note that this example only shows a small set of key BCL concepts and

that a more detailed description of BCL features is presented elsewhere4.

 Z. Milosevic, P.F. Linington, S.Gibson, S. Kulkarni and J.Cole

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented our solution to the problem of integrating
contracts as part of cross-organizational collaborations. The solution consists
of a generic architecture based on our earlier work6, which can be tailored to
specific contract situation by using Business Contract Language developed
for contract domain. This architecture and this language used together
facilitate fast deployment of enterprise contract management systems to fit
specific organizational requirements. These systems are needed to support
important collaborative processes as part of broader inter-organizational
arrangements. In particular they support more effective and efficient
activities of people responsible for contract management activities.

Our work on BCL adopts a similar approach to the early work of Lee 11
on electronic representation of contracts. Lee proposed a logic model for
contracting by considering their temporal, deontic and performative aspects.
BCL is developed from a different angle – the enterprise modeling

considerations related to open distributed systems. Our approach, based on

the ODP community concept
1,2

 and inspired by deontic formalisms, gives

prominence to the problem of defining enterprise policies as part of

organizational structures. Further, we treat contracts as a group of related

policies that regulate inter-organizational business activities and processes.

In this respect we take a similar approach to that of van den Heuvel and

Weigand
12

, who developed a business contract specification language to link

specifications of workflow systems.

In addition, we consider contracts as the main coordination mechanism

for the extended enterprise and, considering possible non-compliance

situations, we provide architectural solutions to the problem of monitoring

the behaviour stipulated by a contract as firstly proposed in the BCA

solution
6
. In addition, this monitoring makes use of sophisticated event

processing machinery similar to that of Rapide language
13

.

In near future we plan to test our solution in a pilot e-business, e-

government or e-commerce environment. This would help us determine

expressive power of the language and its acceptability by contract domain

experts and practitioners. We also plan to explore the use of existing and

emerging tools that support model-driven development to minimize the cost

of language maintenance. Another alternative is to consider suitability of

high level languages to implement BCL constructs. Finally, we expect that

some of the BCL ideas can be used as part of OASIS legalXML e-contracts

standardization
14

.

INTER-ORGANISATIONAL COLLABORATIONS SUPPORTED BY
E-CONTRACTS

ACKNOWLEDGEMENTS

The work reported in this paper has been funded in part by the Co-
operative Research Centre for Enterprise Distributed Systems Technology
(DSTC) through the Australian Federal Government’s CRC Programme
(Department of Industry, Science & Resources).

This project was supported by the Innovation Access Programme-
International Science and Technology, an initiative of the Government’s
Innovation Statement, Backing Australia’s Ability.

REFERENCES

1. ISO/IEC IS 10746-3, Open Distributed Processing Reference Model, Part 3,
Architecture, ISO 1995

2. ISO/IEC IS 15414, Open Distributed Processing-Enterprise Language, 2002
3. P.F. Linington, Z. Milosevic and K. Raymond, Policies in Communities: Extending the

ODP Enterprise Viewpoint, in Proc. 2nd International Workshop on Enterprise
Distributed Object Computing (EDOC’98), San Diego, USA, November 1998.

4. P.F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni, S. Neal, A unified

behavioural model and a contract for extended enterprise, Data Knowledge and

Engineering Journal, Elsevier Science, to appear.

5. Business Process Execution Language for Web Services, 1.1, May2003, http://www-

106.ibm.com/developerworks/library/ws-bpel/

6. Z. Milosevic. Enterprise Aspects of Open Distributed Systems. PhD thesis, Computer

Science Dept. The University of Queensland, October 1995

7. Z. Milosevic, A. Josang, T. Dimitrakos, M.A. Patton – Discretionary Enforcement of

Electronic Contracts. Proc. EDOC '02. pp(s): 39 -50. IEEE CS 2002

8. Z. Milosevic, G.Dromey, On Expressing and Monitoring Behaviour in Contracts,

EDOC2002 Conference, Lausanne, Switzerland

9. Z. Milosevic, D. Arnold, L. O’Connor - Inter-enterprise contract architecture for open

distributed systems: Security requirements. Proc. of WET ICE’96 Workshop on

Enterprise Security, Stanford, June 1996

10. S. Neal, J. Cole, P. F. Linington, Z. Milosevic, S. Gibson, S. Kulkarni, Identifying

requirements for Business Contract Language: a Monitoring Perspective, IEEE

EDOC2003 Conference Proceedings, to appear.

11. R. Lee, A Logic Model for Electronic Contracting, Decision Support Systems, 4, 27-44.

12. W-Jan van den Heuvel, H. Weigand, Cross-Organisational Workflow Integration using

Contracts, Decision Support Systems, 33(3): p. 247-265

13. D. Luckham, The Power of Events, Addison-Wesley, 2002

14. OASIS LegalXMLTC http://www.oasis-open.org/committees/legalxml-

econtracts/charter.php

