

B2B Contract Implementation using Windows DNA
Ning He, Zoran Milosevic

CRC for Enterprise Distributed Systems Technology (DSTC)
The University of Queensland, QLD 4072 Australia

<ninghe, zoran>@dstc.edu.au

Abstract

This paper describes our implementation of a support
infrastructure for electronic contracting – an important

ingredient of Business-to-Business (B2B) e-commerce.

The paper first explains the main benefits of the new

generation of Microsoft technologies - Windows

Distributed interNet Applications Architecture (DNA) and

BizTalk. This is followed by a detailed description of how

we take advantage of the XML tools provided by these

technologies - to implement our enterprise model of

contracts. We use a real-world contract scenario as a

test-bed for examining our e-contract architecture and for

implementing our prototype. The prototype was developed

using publicly available BizTalk preview technology.

Keywords: Business contract, XML-message, BizTalk

1 Introduction

A contract is an agreement whose purpose is to
decrease/eliminate risks associated with the interactions
between trading partners. At present, business contract
processes, including negotiation, signing, validation and
monitoring, are manually carried out by humans. The
rapid growth of Internet and B2B e-commerce
technologies, especially XML-based messaging systems,
makes it possible to produce and exploit electronic
representations of contract forms. These new technologies
can also be used to facilitate management of electronic
contracts, other business documents and corresponding
business transactions, such as checking validity of
contracts, contracts negotiation and monitoring. For
example, the Windows DNA infrastructure can be used to
support many aspects of B2B processes from business
document transmission and database updating to business
partner management, which makes the contract
automation process achievable.

This paper describes our general architecture for
supporting electronic contracts and demonstrates how
BizTalk technology can be used to implement its key
features. The rest of the paper is structured as follows.

Section 2 outlines key aspects of our enterprise contract
architecture and sets the foundation for e-contract design
and implementation in a technology neutral manner.
Section 3 describes the Windows DNA infrastructure and
its main B2B component – the BizTalk family. Section 4
presents our approach for using BizTalk capabilities to
implement our contract architecture described in section

2. It also elaborates on how other DNA components (e.g.
SQL server and Windows 2000 Server) are integrated
with BizTalk in our prototype implementation. Section 5

provides some discussion of the related work. Section 6
concludes the paper and outlines future work directions.

2 Electronic support for business contracts

This section introduces key concepts for an architecture to
support electronic contracting (i.e. a B2B enterprise

model), derived from a more detailed model described in
[3]. It also describes a typical business scenario based on

this model. These concepts have been implemented in our
prototype and the scenario is used throughout the paper to
illustrate our implementation approach.

2.1 B2B Enterprise Model

The B2B enterprise model for electronic contracting is
depicted in Figure 1. This model is described in terms of
roles and their relationships which together support

contract establishment, execution, monitoring and
enforcement stages in a contract life cycle. Key roles in

the model are as follows [3]:

• Contract Repository (CR), to provide electronic

repositories to store standard contract forms and
optionally, standard contract clauses.

• Notary, to store signed instances of standard

contracts forms, which can later be used as
evidence of agreement in contract monitoring
and enforcement activities.

• Contract Monitor (CM), to enable monitoring of
the business interactions governed by a contract
and to signal the contract enforcer if violations

are detected.

• Contract Enforcer (CE), to enforce the
compliance with contract terms. When signalled
by the CM, enforcer may send a warning notice
to various parties informing them of the violation
and possibly prevent further access to the system
by non-conforming parties.

B2B electronic contracts can be used for many real estate,
banking and insurance transactions, purchase and sale of
goods and services and so on. When businesses instantiate
contracts, specific contract clauses can be dynamically
bound with a contract template to define a new business
contract. This process enables flexible changing/updating
of existing contracts. After a contract is signed by all the
parties, it may be useful to monitor business interactions
agreed by the contract. This can be done by auditing the
electronic logging of business interactions. In cases when
contract terms and conditions were breached, contract
enforcer can be employed. The actions performed by
enforcer are different from business to business; the
ultimate enforcements are to be executed by human
decision makers.

We note that there can be several business processes
identified in our business contracts model, but our
architecture is essentially role-based - to enable support
for many types of underlying contracting scenarios (i.e.
business processes implementing them).

Figure 1 B2B Enterprise Model

2.2 Real-world Contract Scenario

A contract scenario has been developed to provide a
definite setting for the implementation of the contract
prototyping system. This scenario was initially described
in [1]. There are three parties involved in the scenario:

• Muzac.com: A music producer that makes MP3
files and sells them over the Internet.

• eShop.com: A provider of portal and retail e-
commerce site services.

• B2B.com: A company that provides software,
facilities and services for development of B2B e-
Commerce, including those that are needed for
electronic contracting.

Muzac.com is interested in using eShop.com’s portal and

retail services for selling its MP3 music files to customers.
After an agreement has been achieved (possibly via

several negotiation steps) and both parties have signed the
complete contract, B2B.com will be responsible for
storing the contract, monitoring the business transactions

and enforcing contract execution. In Fig 1, eShop is
Trading Partner A and Muzac is Trading Partner B. Other

roles, such as Contract Repository, Notary, Contract
Monitor and Contract Enforcer reside at B2B.com.

Figure 2 depicts a simplified UML sequence diagram
identifying main steps in the interaction between parties
involved. A detailed elaboration on how we realize this

scenario is presented in section 4. As depicted in Fig. 2,
we assume that Muzac initiates a contract offer and sends

it to eShop. This trading partner inspects the offer and if
correctly signed by Muzac, it adds its own signature and
sends the completed contract to Muzac.

Figure 2 UML Sequence diagram of contract
scenario

3 Windows DNA Overview

Business partners that participate in B2B transactions
need to manage their business interactions, including the

transmission of contracts and other business documents,
the execution of business contract terms and storage of the
complete contract documents. Microsoft’s BizTalk

technology addresses these needs and provides an XML-
based messaging transmission framework. BizTalk is a

technology within the Windows DNA architecture, which
also includes the Windows 2000 family, SQL Server,
Visual Studio, Host Integration Server, Application
Center and Commerce Server. The contract prototype
presented in this paper is developed using Windows 2000
, SQL server 7.0, Visual Studio 6.0, BizTalk Server and
BizTalk Jumpstart Kit (see figure 3). The overall
Windows DNA architecture supports distributed
applications interoperability by using standard XML
messaging specifications.

Figure 3: Windows DNA components

3.1 Windows 2000 Server

Windows 2000 Server is the foundation layer upon which
BizTalk Server resides. One major feature of the
Windows 2000 platform that we will employ is the
MSMQ message queuing service.

MSMQ is one transport protocol supported by BizTalk.
The advantages that message queuing has over other
transport protocols, such as HTTP, SMTP, and FTP, are
that it guarantees one time message delivery and enables
both asynchronous and synchronous communication. For
example, if organizations choose an asynchronous MSMQ
mode for sending e-contracts between them they do not
have to wait for the reply online. Besides, it is guaranteed
that once sent, the message will be stored in the queue and
will not be lost even if there is some transmission error
(which can be also used for debugging and trouble
shooting purposes).

On a receiving side on the other hand, an organization can
define a trigger that checks if the message satisfies the
condition specified in the trigger. If so, an appropriate
behaviour needs to be executed. This can be done by
using an application or COM components associated with
the trigger. Hence, MSMQ trigger is a message queuing
application, which enables the definition of business rules
describing how the queue’s incoming messages can be
linked to the COM components or other standalone

executable programs. These programs can then implement
part of the business logic.

For example, in the case of our contract prototype, the
contract policies and business rules can be applied and

administered by the contract monitor in response to the
service transaction messages and the contract enforcer can

be triggered in case of violation.

3.2 BizTalk Overview

As stated previously, BizTalk technology is aimed at

facilitating and integrating XML-based business processes
within and between organizations for supporting e-

commerce. BizTalk technology consists of:

• BizTalk Framework, which provides

specifications for the XML-based messaging
implementation;

• BizTalk.org web site [4], which hosts a library of

BizTalk XML schemas, BizTalk framework
specification and a forum for developer
community;

• BizTalk Server 2000 for server side document
transformation and routing;

• BizTalk Jumpstart Kit (JSK) for client side

document execution and business logic
application. The components of the JSK are
anticipated to be included as part of final

BizTalk product release (planned for the end of
this year).

3.2.1 Server Side BizTalk

BizTalk Server is a data-translation and application-
integration server for exchanging XML-based business
documents across the Internet. By using BizTalk Server,

organizations can receive XML documents, parse the
documents based on specific schema and deliver the

documents to their respective applications inside the
organization.

BizTalk Server 2000 Technical Preview is the current
version of the BizTalk Server that we have used for the

prototype implementation. It provides server side
automated support for document transmission, integration
and management. We use its services and utilities for

prototyping of B2B contract specific activities. The
services include XML schema translations, various

transport protocols (HTTP, SMTP, FTP, file, message
queuing, etc) and BizTalk XML formats to build B2B
systems. The utilities are: BizTalk XML Schema Editor to

create and modify XML schema specifications; a BizTalk
Mapper to provide data transformations; Management
Desk to provide a web-based graphical user interface for

simplifying the management of organizations and trading
partners; and Administration Tools to provide control

over document flow, document tracking, business analysis
and troubleshooting.

All the messages sent to BizTalk Server will be stored in
the queues. If an error occurs during transmission, the
document can be traced from the suspended queue in the
Administration Tool. Otherwise it stays in the work queue
waiting to be consumed.

The main component in BizTalk Server for transmission
of data across the network is a pipeline. Pipeline directs
the server through the steps necessary to transport the
documents to the trading partner or applications within the
organization. A pipeline is configured at the pipeline
editor in the Management Desk, where trading partners
need to specify the inbound and outbound agreements for
the document definition.

The Document Definition indicates what types of
documents the source organization can send to the
destination organization using agreements. An agreement,
(defined in the agreement editor in the Management
Desk), represents the rules that regulate electronic data
exchanges from the source to the destination organization.
In creating agreements, a trading partner needs to specify
the source and destination of the document, the types of
the message (document definition) and the transport
protocol. The agreement editor can also define how
documents are enveloped, mapped and secured.

There are two types of agreements: inbound and
outbound. Outbound agreements regulate how documents
are directed out of BizTalk Server, and inbound
agreements determine how messages come into the server.
One or more pipelines can then be specified to describe
how a document definition from one inbound agreement is
to be linked to one from an outbound agreement. This link
enables message routing at the BizTalk Server and
mapping between document definitions, if these are
different message types.

3.2.2 Client Side BizTalk

The BizTalk Jumpstart Kit (JSK) provides client side
tools and a framework for integration between business
applications. Our contract prototype uses the Jumpstart
Kit to direct XML messages of different types (that
contain contract and other business documents) to the
corresponding applications maintained by this BizTalk
Server. We also use the JSK to facilitate access to
databases and perform business logics.

Figure 4 shows main components of the BizTalk JSK
involved, e.g. in processing incoming contract offer at

eShop site (BTS represents BizTalk Server 2000, I.A. is
the inbound agreement, O.A. is the outbound agreement
and A.A is the application adapter). Note that a more
detailed description of the contract-specific message flows
and application interfacing is given in 4.2.2.

The components provided by the JSK include adapters,
plug-ins, envelops, selector and namespace service as
summarized below.

Local
Repository

BTS

eShop

I.A O.A

envelop

A.A

Application Adaptor

Script
Selector
Prog-id

Apply business logic:
1. Check values
2. Sign contract
3. Display the message
4. Send response
5. Update contract

database

JSK Admin
Tool (Name

Service)

registerselectQ
adaptor’s

Prog-id

Pipeline
Muzac to Adapter

Xml
message

reference

Contract instance
from Muzac Envelope

Plug-in

MSMQ
Trigger

Notary
Database

B2B

Update
database

Figure 4: Contract Transmission

• Application adapters are COM objects whose

creation is supported by a JSK application
adapter template. An application adapter is used
to consume incoming messages of certain types
and implement business logic that handles this
message. The flow of messages targeted for a
particular adapter is as follows. When a message
arrives at the BizTalk Server of an organization
(via a transport adapter, e.g., MSMQ), it is
passed to the selector provided by the JSK. The
selector will then refer to the name service (i.e.,
JSK Administrator Tool) to hand the message to
the appropriate application within the domain of
this organisation. There is one application
adapter per message type.

• The plug-in wizard is a JSK development tool

used for the creation of plug-ins. A plug-in is a
COM object hiding the details of the underlying
XML management logic and node tree structure.
It is based on the DOM standard. [11].

• Selector is a subsystem in the BizTalk Jumpstart

Kit that is used for forwarding of the incoming
messages to the corresponding business
applications. It consists of: two MTS/COM+
components (selector.submit and
selector.engine), a message queue (a private
queue named ‘biztalk’), and an NT service
(called ‘selectQ’). The SelectQ forwards

messages coming into the queue into the
selector.engine responsible for processing the
message. Essentially, Selector represents an
embodiment of an MSMQ and MSMQtrigger
facilities (as described in 3.1) for the purpose of
a BizTalk developer. In fact, MSMQ trigger is
another and a more reliable way of routing
messages.

• Namespace service resides inside the BizTalk

Jumpstart Kit administration tool. The service is
used by selector.engine, which decides what
components to call based on the contents of the
message and values of the namespace.

• Envelope represents a wrapper for one or more
business documents (which, along with the
corresponding attachments, constitute a manifest
element type within the envelope schema). In the
JSK, there is a COM object created by the
selector that mirrors the XML envelope message.
This envelope object will reference the
corresponding plug-ins.

By using JSK facilities, we developed our prototype to
handle the incoming XML messages and manage the
business logic. We start by using the plug-in wizard
provided by the JSK to create a contract plug-in based on
our XML contract schema (called contractTest). This
plug-in helps us to insert the specific contract values into
contract instances that will be exchanged until the final
agreement has been reached. We use the application
adapter template to implement the business rules for
handling the sequence of steps at the receiving side. This
includes the processing of contract instances and finally
their storage into databases, e.g. storing signed contracts
into the notary database and transaction data (during
business transactions execution stage).

If BizTalk Server is regarded as the XML-based
infrastructure for B2B document transmission, the
BizTalk JSK is the application-to-application integrator.

4 Implementation of Contract Support
using Windows DNA

This section presents our prototyping approach to realize
the business scenario based on B2B enterprise model
outlined in section 2. We first describe our working
environment, followed by detailed presentation of the two
stages in a contract life cycle: the pre-contractual stage
and service execution stage.

4.1 Working environment

The complete contract scenario involves three
organizations (Muzac, eShop and B2B) and thus the real
implementation infrastructure should consist of three
Windows 2000 Servers - one at each of these sites. On top
of each Windows server, there is a BizTalk Server for
coordinating the communication among the organizations.

Our initial working environment consisted of one machine
used initially for ‘proof of concept prototyping’ - and thus

we begun by simulating three servers logically. We are
currently in the process of porting the existing
implementation onto two servers. However, the design

principles and implementation are independent of the
numbers of machines used. This section focuses on these
design principles, rather on the deployment issues.

We note that each server (at Muzac, eShop or B2B site),

needs to have Windows 2000 server, BizTalk Server 2000
Technical Preview, BizTalk Jumpstart Kit, and Visual
Studio 7.0 installed. At B2B.com, SQL server 7.0 is

required for Notary Databases - used to store the contract
instances and keep records of the contract transactions.

4.2 Support for Pre-contractual stage

The pre-contractual stage covers all the necessary steps
involved in the business contract negotiation and

establishment process. The stage is decomposed into three
phases: initiation of a contract offer by one party,

transmission of XML based contract instances during
negotiation, and processing and validation of contract
terms after the messages are recieved.

Standard contract templates are stored in the Repository at
B2B.com. Either eShop or Muzac can then download a

specific business contract template from B2B, customize
them and integrate them into business operations. In the

current implementation we simplified the scenario by
assuming that an authorized person at Muzac initiates a
contract offer by filling out a contract template, signing it

and forwarding the contract offer to eShop.

The contract is then processed by the B2B software
running at eShop’s server. To further simplify the
scenario, we assume that such contract instance received

by eShop is acceptable to the eShop, after which this
organization only needs to ensure that Muzac has signed
the offer. If so, the eShop will then sign this contract

instance and forward it to the Notary at B2B. The Notary
is implemented as a SQL database. Once an authorized

person at eShop approves the contract, the application
adapter dealing with the receipt of the contract message

will automatically update the contract table inside the
Notary (Fig 5). This figure shows the working procedures
of the pre-contractual stage (BTS denotes BizTalk Server
2000, I.A. is the inbound agreement, O.A. is the outbound
agreement and A.A is the application adapter).

storage

Contract
Repository

Get contract form

BTS

eShop

I.A O.A

Contract instance

Inbound agreement
from Muzac to eShop Outbound agreement

from eShop to Adapter

pipeline

storage
BTS

Muzac

I.A O.A

Outbound agreement
from Muzac to file

pipeline

A.A

complete contract
instance (xml)

Inbound agreement
From eShop to Muzac

I.AO.A

Notary
Database

Update
contract
values

contract
monitor

Contract
form

Plug-in B2B.com
Fill in values

Figure 5: Pre-contractual Stage

4.2.1 Contract Initiation

The scenario begins with Muzac opening an electronic
contract form and completing the contract by entering the
values required in the contract form and then sending the
completed contract offer to eShop. The contract form is a
VB form created based on the contractTest.xml schema.
For the purpose of our prototype, the XML schema is
simplified and contains only six elements: the names of
two trading partners, service levels and corresponding
price fields and the start and end date of the contract. The
schema is compliant with the BizTalk Framework 1.0
specification so that it is understandable by BizTalk
Server.

We note that we are also experimenting with more
comprehensive schemas that reflects real business
contracts, such as the one presented in [1] and [2]. The
validation of the contract schema can be done using
BizTalk Editor – to ensure its compliance with the

BizTalk Framework specification. We store the validated
schemas into the BizTalk Server’s document specification
repository - for future retrieval of document definition

In order to make a valid offer, several fields are required

in the form: the names of the related parties in the contract
(Muzac and eShop in our case), the start date and the end
date of contract and service level which determines the

price of the contract. For instance, the price for service
level 1 is $2000, level 2 is $2500 and level 3 is $3000.

The party that makes the offer must sign it before
forwarding it to the other party.

Once the submit button is pressed, the values entered by

Muzac will be added into the XML instance. Based on the
specification of the corresponding pipeline, the business
document would be sent to the BizTalk Server at eShop

(BizTalk’s Interchange.Submit function is used here,
where the pipeline is one of the parameters used).

4.2.2 Contract Transmission

In our prototype, all the document transmission and
message transformation processes among trading partners
are centrally coordinated by the BizTalk Server at each

site. Thus the way contract instances are transmitted is
entirely specified by the configuration of BizTalk Server.

Namely, before receiving, processing and forwarding
XML messages, the organization management, document
definitions, inbound outbound agreements and pipelines

should be configured properly in BizTalk Management
Desk.

In the case of our proof-of-concept prototype the major
communication flows among three parties (as shown in

Fig.5) are:

• Muzac to eShop via BizTalk Server at eShop

• eShop to Muzac via BizTalk Server at eShop

• Direct communications between eShop and B2B

• Direct communications between Muzac and B2B

In order to setup the channel between Muzac and eShop,
two pairs of inbound and outbound agreements are

defined along with pipelines that connect them. For
example the bottom-depicted pipeline in Fig.5 at eShop
links an inbound agreement from Muzac to eShop and the

outbound agreement from eShop to eShop’s adapter. This
pipeline enables a contract message arriving at eShop to

be ultimately processed by eShop’s corresponding
application adapter (which among other things will finally
store it into a local storage at eShop). However, in order

to reach the application adapter from the BizTalk Server
one needs to use facilities provided by JSK, as follows
(see also Figure 4).

Inside the outbound agreement, we have written a VB

script that instantiates a JSK selector component. Thus the
XML contract instance will be handed over from BizTalk
Server to BizTalk Jumpstart Kit by calling the

selector.submit API. As mentioned above, the selector
will place the message into the biztalk queue (provided by

JSK), which is associated with MSMQ Trigger. If the
trigger detects that it is a BizTalk standard XML message,

the selectQ will start executing and, by referring to the
namespace service provided by JSK Administrator Tool,
selectQ will find the specific application adapter to handle
the contract instance.

4.2.3 Processing of received contract messages

Upon reaching the adapter, the contract instance message
will be processed by the application adapter. This adapter
implements business logic consisting of the following
steps:

1. Validation of contract
Before signing the contract, eShop needs to make
sure that Muzac has already signed the contract and
all the values supplied are acceptable.
2. Signing the contract
After validating the values, eShop will sign the
contract.
3. Sending of replies to Muzac
After eShop has signed the contract, it will send the
complete contract instance to Muzac via BizTalk
Server.
4. Storing the signed instance in the Notary

database
Finally, the application adapter will fill the contract
values into the contractTable inside the Notary
database.

We note that our future prototype will have another
BizTalk Server at Muzac and in that case the contract
instance will firstly be sent to the local server, then
forwarded to the remote BizTalk Server. Specific business
requirements for Muzac will determine the method for
handling messages received on its side (i.e. whether to use
another application adapter or to store it in a file).

4.3 Support for service execution stage

Upon successful establishment of the contract, Muzac and
eShop can engage in business transactions as governed by
the signed contract (stored in the Notary). Business
transactions include transmission of MP3 files from
Muzac to eShop, payment by Muzac to the eShop and so
on. We describe here the transaction of Muzac sending
MP3 files to eShop as governed by the contract
agreements. To ensure that contractual terms are respected
by both parties we employ a Contract Monitor (CM) at
B2B.com to closely monitor the behaviours of both parties
(especially Muzac) in these transactions. The monitoring
is based on the policy specifications that are derived
and/or refined from the contract description. This
derivation is beyond the scope of this paper and is
presented in more detailed in [1].

In our prototype the monitoring is applied to the service
level contract element, reflecting various file quotas for
files to be stored in the eShop. For example, if the service
level specified in the contract is level 2, the related policy
for service level 2 is that eShop provides 2000 MB disk
space for Muzac to store the MP3 files. The monitoring
behaviour of the CM consists of checking the transaction
record of transactions performed until this point in time,
and checking whether the new transaction initiated by
Muzac exceeds the disk quota. If true, the CM will trigger
the contract enforcer, which has permission to prevent the
transaction. The following figure shows the service
execution stage, which includes service execution and
contract monitoring.

Figure 6: Service Execution Stage

4.3.1 Service Request

Service in our scenario (MP3 file download) is requested
by Muzac via an electronic service request form, used to
enter the desired service values and submit service
requests. The service request entries include values for the
MP3 music files quantity, the transaction date and a
contract reference that associates the contract with this
transaction. This contract reference is an important piece
of information, that provides the reference to the contract
table stored in a Notary.

Once the submit button is pressed, the contract monitor
will be triggered to observe the transaction behaviour by
referencing the contract instance, and the transaction
records from the notary database according to the contract
reference number.

4.3.2 Monitoring and Enforcing

The CM is implemented as a COM object and it performs
monitoring activities in the background. Each time when
the service is requested by a user, the CM will be
triggered to examine the behaviour of both parties. The

CM at B2B’s site will thus check the service level contract
element (as well as transaction date and contract number)

of the contract and compare it to the signed contract
instance in the Notary and the available quota based on

the previous transaction records. If the transaction
complies with the contract rules/policies, the transaction
will be processed and the values will be updated into the

transaction table. Otherwise a warning window will pop
up and the transaction will be terminated immediately.

5 Related Work

To the best of our knowledge there is currently limited

support for electronic business contracting as presented in
our paper. Some support for electronic contracts has been

included as part of the CrossFlow project [7]. The focus
of this work is on contracts used to describe agreements
between organizations as to how they are to handle

business processes crossing organisational boundaries.
Our approach to contract architecture does not mandate

the way in which contracts are used – this is left to a
particular business scenario. However, we do support
expression of contractual dependencies for inter-

organisational business processes. Some of the initial
ideas are presented in [8].

Architecturally, our work is perhaps most closely related
to work from COSMOS project as reported in [9]. Our

implementation presented here takes advantage of new
generation of infrastructures that use XML as a basis for
transmitting messages and is based on a more

comprehensive framework for enforcing policies
associated with contracts.

Finally, the recently published tpaML specification [12]
addresses some of the issues reported in our work. The

major difference between the tpaML and our work is that
tpaML concentrates on specifying the messages sent

between the trading partners, their sequences and the
choice of the underlying security and other infrastructure
mechanisms. Or work is attempting to reflect the business

level of electronic contracting, including its legal
perspective, and to simulate processes and practices used
in real business operations.

6 Conclusion and Future Work

In this paper we presented an approach to implementing a
distributed B2B e-contract architecture. We use Windows

DNA infrastructure and in particular its BizTalk family of
tools, namely BizTalk Server and BizTak Jumpstart Kit.
They provide flexible and reliable transmission of XML

messages embodying business documents. In addition,

they provide several facilities for implementing
application logic associated with the transmission of

business documents. We found these tools of an
advantage when designing and implementing support of

electronic contracts.

There are several open issues in this paper that we plan to

address in future. First, we plan to provide support for
Web-based approach for creating Web contract templates

based on XML schemas. This will employ XSLT
standard. Second, we plan to implement support for the
use of digital signature to ensure security in business

documents flow across organizations. Third, we plan to
include more comprehensive real-world business rules and
policies into the contract prototype and to experiment with

multiple BizTalk Servers operating in various
environments, ranging from fully trusted to highly un-

trusted environments. Next, we plan to adopt the recent
BizTalk Framework 2.0 and provide support for SOAP-
based messaging systems as well as to use other similar

technologies such as MQSeries family from IBM. Finally,
our prototype will follow further developments of our

contracts meta-model as part of our work on adapting our
current architecture to relate to the ebXML meta-model
[10] for business processes and contracts. Some of the

initial ideas are presented in [13].

7 Acknowledgements

We wish to express our gratitude to Charles Herring for

his help in providing us with a better understanding of the
intricacies of BizTalk and for his guidance in our
implementation efforts. Charles also proposed the

scenario that we used as a test-bed for the ideas presented
in this paper. We would also like to thank Jim Steel for his

comments on an earlier version of this paper.

The work reported in this paper has been funded in part

by the Co-operative Research Centre Program through the
Department of Industry, Science & Tourism, Australia.

8 References

[1] Herring, C. and Milosevic, Z. “Implementing B2B
Contract Using BizTalk”
[2] Goodchild, A., Herring, C., Milosevic., Z., “Business

Contracts for B2B”, CAISE’00 Workshop on
Infrastructures for Dynamic B2B Service Outsouring,
Stockholm, June 2000.

[3] Milosevic,Z. and Bond, A. “Electronic Commerce on
the Internet: What is Still Missing?”; Proceedings of 5th

Conference of the Internet Society; pages 245-254,
Honolulu, June 1995.
[4] BizTalk Org Net: http://www.biztalk.org/

[5] BizTalk Initiative: http://www.microsoft.com/biztalk/
[6] Microsoft BizTalk Jumpstart Kit Documentation
[7] www.crossflow.org
[8] Schulz, K. and Milosevic, Z. “ Architecting Cross-

Organizational B2B Interactions”, EDOC’2000,
Sep.2000, Japan.
[9] F.Griffel, M.Boger, H. Weinreich, and W.

Lamersdorf; M. Merz. “Electronic Contracting with
COSMOS – How to Establish, Negotiate, and Execute

Electronic Contracts on the Internet” EDOC’98
Workshop, La Jolla, California USA, November 1998
[10] Business Process Project Team, “The ebXML

Business Process Metamodel Second Draft” 6/23/00,
available from www.ebxml.org
[11] XML DOM Reference: http://www.w3.org/TR/REC-

DOM-Level-1/��
[12] M. Sachs et al., “Executable Trading-Partner

Agreements in Electronic Commerce”, IBM T.J. Watson
Research Centre, 2000.
[13] J. Cole, Z. Milosevic, “Extending support for

contracts in ebXML”, submitted to Workshop on
Information Technology for Virtual Enterprises (ITVE),

Gold Coast, QLD, Australia 29-30 January 2001.
�

