
Conversation-oriented Protocols for  
Contract Negotiations 

 

James E. Hanson1, Zoran Milosevic2 
1IBM T.J. Watson Research Center, Yorktown Heights NY 10598, USA 

jehanson@us.ibm.com 
2Distributed Systems Technology Centre, Brisbane, Qld 4072, Australia 

zoran@dstc.edu.au 

 

Abstract 

The expression of contracts in computer readable form, 
and the development of automated tests for completeness 
and well-formedness of contracts, has opened the door to 
significant advances in automating contract negotiations. 
To meet the needs of automation, such negotiations must 
follow explicitly specified message-exchange protocols. 
But to meet the needs of the negotiating parties, these 
protocols must be independent of the decision-making 
processes driving them as well as neutral to the outcome 
of the negotiations. In this paper we illustrate how both 
needs may be simultaneously met by a small set of 
conversation policies employed within a general purpose 
conversation support architecture. 

  

1 Introduction 
In e-business, as in the traditional business, contracts are a 
key governance mechanism for regulating activities 
between enterprises. A contract expresses a statement of 
promises of parties involved to act in a certain way, 
including the consumption of resources, fulfilling 
requirements and the communication of information.  

The e-business setting however requires more 
comprehensive contract management support due to the 
increasingly dynamic, event-driven environment and the 
proliferation of contracts (both in terms of their sheer 
number and their complexity). This includes not only 
contract drafting facilities, possibly being the predominant 
contract management tools today (mostly word processor 
centered), but also tools to support other stages in contract 
life-cycle. This encompasses increasing levels of 
automation for activities such as: contract negotiation, 
legal validity checking, digital notarization and storage, 
notifications about upcoming milestones, performance 
monitoring, negotiation over variations during execution, 
enforcement, and contract analytics and re-negotiations.  

To support automation of these contract management 
activities a formal expression of contract is needed. At 
present, there are several styles of such expression of 
contract. One approach is to specify contract in terms of 
expected behavior of parties involved in the contract, 
including the statement of sanctions associated with 
contact non-compliance. Examples of such approaches are 
 [3], based on the Petri Nets and deontic logic formalism, 
and work reported in  [2], making use of Genetic Software 
Engineering methodology.   

Other approaches deal with the specification of contract 
semantics in terms of the conditions that need to be 
monitored in real-time, both to ensure the detection of 
existing or potential breaches to contract and to facilitate 
the incorporation of various corrective measures  [1],  [6] 

The above two classes of approaches begin with a premise 
that a contract has been negotiated and the agreement is 
expressed in a form suitable for electronic processing. 
However, apart from some support in  [3], these 
approaches do not consider the process of contract 
establishment and how the objectives and the 
corresponding intentions of parties involved in negotiation 
influence the structure and content of an agreed contract.  

The recent work reported in  [4] and  [5] represents an 
initial attempt to address this problem. Both of these 
solutions express contract formation process in terms of 
speech act patterns  [17]. These expressions are suitable to 
be used for contract negotiations because the speech acts 
formalism well reflects intentions of parties interested in 
collaboration and can be used to validate that their 
conversation is coherent and complete. However, neither 
of these two contributions provides support for a suitably 
conversational style of interaction to support exchange of 
multiple, correlated messages that for example carry 
speech acts semantics.  

This paper can be regarded as a contribution in this 
direction. Namely, we focus on the problem of contract 
negotiation and in particular on the conversational 

mailto:jehanson@us.ibm.com


capabilities and protocols needed to facilitate any kind of 
negotiation in e-contracting processes.  

In the paper we propose the use of generic conversation 
support model developed in  [7] for the exchange of 
messages between parties during the contract negotiation 
stage. The central part of this conversation model is the 
use of pre-programmed patterns of message exchange 
called Conversation Policies (CPs). Examples of the 
messages used in contract negotiations and that are part of 
these patterns are offer, counter-offer, acceptance and 
rejection. We note that they can be expressed by using the 
speech acts formalism. When used in combination, e.g. 
offer and acceptance, speech acts provide the basis for 
establishing obligations and other deontic concepts typical 
to contract expressions.  

The conversation support model draws on an extensive 
and growing body of work in the software agents 
community. [8] A key differentiator from that work is the 
attempt to span, in a uniform way, the broad range 
between highly structured programmatic processing of 
messages (as is found in Web Services, for instance), on 
the one hand, and the kind of dialogues humans engage in, 
on the other. The conversational model of ref.  [7] fosters 
the evolutionary growth of hybrid systems in which there 
is sufficient structure for automated tools to be of use, but 
there is also sufficient flexibility and richness of feedback 
that people interact with them in a natural way.  

We use the conversation model to support various levels 
of contract negotiation, namely at the level of contract 
template or at some lower level contract description such 
as individual contract clauses or negotiable contract 
variables e.g. price and quality of service (QoS). Thus the 
messages used in the course of negotiations above can be 
parameterized to carry any of these three levels of contract 
abstraction. These levels correspond to the contract 
representation developed as part of Business Contract 
Architecture (BCA) work  [6]. In addition, this negotiation 
solution can be regarded as a specific realization of the 
BCA Contract Negotiator role. 

We note that an important requirement for protocols 
supporting negotiations is that they must not try to channel 
the negotiation in one way or another. Rather, they 
provide a set of guidelines that negotiating parties can use 
in order to make their negotiations easier to carry out. In 
other words, the CPs provide a standardized "syntax" for 
the negotiation, which should be separate from specific 
business logic that entails the strategy of parties. 

This is not necessarily true of protocols in general. The 
voluminous literature on mechanism design in economics 
 [10] deals, in essence, with crafting protocols that will 
induce the negotiating parties to reach agreements that 
have some predefined property regarded as desirable by 

the mechanism designer--e.g., prices that divide the 
surplus equally, etc. The disadvantage of such things is 
that, if either of the parties doesn't want to be manipulated 
in this way, he'll simply choose not to use the protocol. 

There are similarities between the CP based protocols and 
some aspects of ebXML BPSS specification  [13]. Both 
models support exchange of messages that carry business 
documents. However, while BPSS mandates that two such 
messages should form a Business Transaction (i.e. 
messages enacted by the Requesting and Responding 
Business Activities) CPs are more open-ended, and can 
express more complex sequencing constraints than can 
BPSS choregraphy. On the other hand the specification of 
concurrency operators as part of BPSS orchestration  is 
beyond the scope of CPs. 

The remainder of this paper is organized as follows. In 
section 2 we review the conversation support architecture 
that provides the runtime support for contract 
negotiations. Section 3 describes the key contract 
negotiation requirements and highlights several contract 
parameters which are often subject of negotiations. These 
variables are discussed in the context of a business 
contract language of a broader scope. Section 4 describes 
a set of conversation policies designed to support contract 
negotiations, and section 5 discussion extensions to cover 
additional cases. Finally, in section 6 we conclude with a 
brief summary of some future work areas. 

2 Conversation support architecture 
The back-and forth, iterative nature of contract 
negotiations requires the adoption of the conversational 
model of interactions  [7]. In the conversational model, 
two parties first set up a two-way, open-ended 
conversational session, and then proceed to send each 
other asynchronous messages within the context of that 
conversation. One common way to implement this is for 
one party to initiate the conversation by sending a 
message consisting of a request to start a conversational 
session, and including a globally unique conversation ID 
to be used by both parties for the duration of the session. 
Thereafter, each message sent in the conversation 
contains, in its header, that conversation ID. 

Once the conversational session has been established, the 
conversational model specifies that the two parties begin 
following a common conversational protocol, or 
conversation policy (CP), which specifies a set of 
messages, sequencing constraints, and timeouts defining 
the message-exchange protocol. Each party executes its 
own copy of the CP, using it to carry out its own side of 
the conversation by assuming one of the roles defined in 
the CP.  



The execution of CPs is most naturally factored into a 
separate conversation management subsystem. This 
sybsystem mediates between the messaging subsystem 
defining the “plumbing” by which messages are 
exchanged, and the decision logic (a/k/a business logic), 
which drives the interaction by selecting which of the 
allowed messages, as defined by the CP, to send in any 
given instance, and as well supplies the values of the 
business data to be sent in the message. This is shown in 
Fig. 1. 

One likely scenario is for the messaging system to make 
use of Web Services technology  [11] for both sending and 
receiving messages.  The conversation management 
system validates and classifies incoming messages,  
translates them into the appropriate decision data (a/k/a 
business objects), and hands the classified decision data to 
the decision logic. Similarly, for outputs of the decision 
logic (i.e., decisions it has made), the conversation 
management system verifies that the decision is in 
conformity with the CP being executed (i.e., that it’s 
“allowed”), translates the decision data into the 
appropriate message, and hands it over to the messaging 
system for delivery. This separation of concerns naturally 
insulates those aspects of the interaction which must be 
common to the participants-- messaging formats and 
sequencing constraints--from those which need not be--
business objects and decision logic. 

The decision logic in this case includes a subsystem for 
establishing the completeness and well-formedness of 
contracts in a similar way as was proposed in  [2]. In 
addition, the decision logic could include support for 
checking legal validity of the contract under negotiation, 
as for example was discussed in the BCA context  [16]. 
This subsystem may involve some automated tools and is 
shown in the upper right box in Figure 1.  

 

 

A
s
h
m

workflow system in which humans play predefined 
decision-making functions, or role, or may, in the future, 
approach full automation. This is depicted by the bottom 
right box in Figure 1. 

Of essence here is the fact that every aspect of the 
decision logic is hidden from the other party, which only 
“knows” about the CPs being used. This feature permits 
businesses to adopt any internal development plan, i.e., to 
automate in any way, according to any timetable, without 
depending on the other parties involved. 

3 Contract Negotiation  
The characteristics of the conversation policy model 
described above are suitable to be exploited to support 
conversation-oriented protocols for contract negotiation. 
We begin with a summary of key requirements for 
contract negotiation infrastructure, followed by the 
description of key contract constructs that are usually 
subject of contract negotiations. 
 
3.1 Contract negotiation requirements 
We define contract negotiation informally, as a process of 
making and adjusting offers between potential parties 
willing to be involved in an economic transaction - until 
an agreement is reached or the process is terminated 
without an agreement.  
 
In an electronic form negotiation can be implemented by 
sending electronic messages between parties. These 
negotiation messages carry contract related offers and 
counteroffers. Examples of negotiation message types 
include proposeTemplate, counter-proposeTemplate, 
addClause, replaceClause, accept, reject and so on.  
 
Since negotiation infrastructure can be linked to both 
automated and human decision makers it is desirable that 
such an infrastructure supports a varied degree of 
structuredness of negotiations. This refers to both the 
structure of negotiation process and the structure of 
negotiation message content exchanged.  
 
To support predictable negotiation processes, an 
automated negotiation infrastructure needs to be able to 
interpret the incoming negotiation messages and 
consequently negotiation message types should belong to 
a predefined message set. These message types are used to 
fully define the negotiation process and they are the basis 

M
essaging endpoint

C
onversation

M
anagem

ent

Contract testing/validation

Strategic decision-making

Messaging 
bus / Internet
Messaging 

bus / Internet
Figure 1 Conversation support architecture and 
link to contract negotiation business logic 
nother aspect of the decision logic is related to a 
trategic decision maker of any character. This may be a 
uman interacting directly with the conversation-
anagement system, or it may be a semi-automated 

for the design of negotiation engines - such as the one we 
propose in the next subsection. Therefore, the negotiation 
process should be fully structured irrespective whether 
humans or automated entities are involved in negotiations. 
 



As far as the structure of negotiation messages is 
concerned there needs to be more flexibility regarding the 
variability of their contents. This is to provide a certain 
degree of freedom for decision makers involved in 
negotiations, in particular human negotiators, allowing 
them to send any negotiable variable, be it chosen from a 
predefined set or created ad hoc. In the former case for 
example the message contents can be restricted to support 
some specific e-commerce standards data types or 
organization specific contract clauses. In the latter case 
the content can be left unspecified to allow any data to be 
inserted within (again, predefined) negotiation message 
types, e.g. any kind of new clause to be proposed and 
counter-proposed. 
 
In summary, negotiation engines require a structured 
negotiation process while the content of the negotiation 
messages can be unstructured. These two principles are 
fully supported in the contract negotiation engine 
proposed in section 4. 
 
Contract negotiation can involve two or more parties. In 
case of multiparty negotiations a great deal of such 
negotiations can be reduced to multiple bilateral 
negotiations. For example two organizations can agree to 
jointly respond to a tender issued by a third organization 
and in that case these two organizations can engage in 
prior negotiations and subsequently choose prime 
contractor for the tender. The prime contractor may be 
involved in some negotiations with the issuer of the 
tender.  There are also some other negotiations that are 
true multi-party negotiations as when all parties have the 
same status in a submission as for example is case in a 
response to some technical standard  RFP.  
 
When considering electronic contract management 
applications, in general, contract negotiations can be 
treated independently from the contract performance 
monitoring activities. This is currently the approach taken 
within BCA - mostly driven by the pragmatics of our 
system development - and reflected in the formalism of 
our Business Contract Language  described below.    
 
3.2 Business Contract Language 
Business Contract Language (BCL) defines a number of 
concepts for the specification of contract conditions 
necessary for the support of real-time contract 
management activities. The BCL is part of our recent 
work related to BCA and the language is evolving as we 
learn more from the business problems associated with 
contracting.  

For the purpose of this paper we describe a subset of the 
BCL of particular relevance to contract negotiation. For 

readability purposes, we chose to explain this BCL 
semantics in slightly informal manner – using natural 
description of the key structural language constructs rather 
than providing XML schema for the language. We note 
that we use XML as a basis for the description of our 
contract language, both in terms of its structural aspects of 
relevance for the negotiation and for the  behavioural 
aspect of the language, as in part presented in  [2]. 

The outermost language construct in BCL is the contract 
template. Each contract template consists of a list of 
contract clauses (which can reference each other if 
needed) and an element reserved for signature details. A 
contract template is introduced to reflect the fact that 
many business contracts are predefined – expressed in 
terms of standard contract forms. These contract forms 
can be regarded as partially completed contracts and they 
serve as a basis for the creation of specific contract 
instances that reflect objectives of each trading partner.  

Each contract clause contains a human readable text and 
can also include one or more fields that are placeholders 
for data to be filled for a contract to be instantiated. 
Typically, these fields are the items that each party to the 
contract can negotiate, and we refer to such an item as 
NegotiatedItem. Examples are start and end date of 
contract, quantity of goods, QoS parameters, roles etc. 
These negotiable items can be compared to the formal 
parameters and the actual parameters are the values that 
have been agreed after the negotiation process.  

Each clause can also contain one or more subclauses. Our 
language currently supports recursive expression of sub-
clauses. Another option is hierarchical representation. 
Further, each clause has a corresponding type, such as 
preamble clause, ordinary clause or termination clause. 

A signature element of the contract template contains a 
list of two or more SignatureDetails elements providing a 
placeholder for two or more <person, digital signature> 
pairs. 

Finally, every contract can have association with one or 
more executable policies which we introduced mainly for 
real-time monitoring aspects of contracts. These policies 
specify conditions to be monitored and they are 
referenced by the BCA contract monitor role. Although 
we envisage a possibility of negotiations of these 
executable policies, this negotiation is more related to the 
agreement on the deployment options for the contract 
monitoring and this problem is beyond the scope of this 
paper. Thus the focus of the BCL description is mostly 
related to the structural aspects of contract. Other BCL 
aspects, such as those concerned with expression of 
policies are described elsewhere  [2]. 

We believe that the BCL constructs of template, clause 
and negotiated items are the most frequently used 



constructs as subject of negotiations. They are key 
semantic constructs that can be used as part of messages 
sent via the negotiation engine introduced in section 2. In 
addition, the exchange of signatures typically confirms the 
negotiation process resulting in a legally binding 
agreement.  

This negotiation process is explained in section 4 below, 
but before we describe it in detail, we make a few remarks 
regarding the nature of BCL.  

Current BCL, driven by contract monitoring needs was 
developed without taking into account negotiation 
perspective. However, there can be additional benefits by 
establishing a better link between these two aspects of 
contract management, and in particular a link between the 
negotiation messages and the obligation monitoring 
activities. For example, the history of negotiations could 
be used to determine certain characteristics of trading 
partners – which can be exploited say in dispute 
resolutions and in determining reputation characteristics 
of the parties.   

One way of establishing a semantic link between 
negotiation messages and the obligations stated in the 
agreed contract is to consider speech acts semantics  [17], 
long used by the software agents community. Speech acts 
express units of communication between people or agents. 
Essentially, every offer exchanged in contract negotiation 
is an instance of a speech act. Speech acts usually have a 
meaning when they come in pairs, resulting in some kind 
of social effect, such as obligations, prohibitions, 
authorizations or accomplishments  [4]. Thus, the 
motivation behind the consideration of speech acts is that 
they establish the basis on which obligations and other 
policies in the contract are expressed. For example when a 
supplier of a service registers their services and their price 
structure in a service registry, this action is regarded as 
provider’s statement of promise – a special kind of speech 
act. When subsequently a buyer accepts this offer, this 
places obligations for the supplier to deliver the service 
according to the promise and for the buyer to do payment 
according to the service contract. 

4 Conversation policies for negotiation 
We represent the conversation policies for contract 
negotiation in a multi-level scheme, in which one 
conversation policy serves to frame the negotiation as a 
whole, making use of a sequence of other conversation 
policies to deal with negotiations at different levels of 
detail. These detail levels are, in order of decreasing 
generality: 

1. Negotiation of the contract template.  
2. Negotiation over clauses. 
3. Negotiation over variables within the clauses. 

The overall evolution of the conversation is from general 
to specific, though as we will see, both parties have 
opportunities for revisiting a more general level after 
having operated on a more specific level. 

In addition to specifying the sequencing constraints on 
messages, CPs may place restrictions on the time period 
over with the negotiations may continue. Time limits may 
be specified for the negotiation as a whole, for any of its 
phases, or for individual messages. This is described 
further in section 5.2; for brevity, timeouts are omitted 
from the rest of the discussion in this section. 

In the subsections below, we describe the structure of the 
main contract negotiation policy and of the “child” 
policies that represent negotiations at the different levels 
of detail. The policies themselves are specified in cpXML 
 [14], an experimental XML dialect for specifying state-
machine based conversational protocols. We have chosen 
to present them here in the form of state-transition 
diagrams in order to emphasize the structure of the 
protocols rather than the details of the cpXML schema.  

 

4.1 NegotiateContract CP 
The NegotiateContract CP is the main or “framing” 
conversation policy, that lays out the different options 
available for use by the negotiating parties. It structures 
the conversation as a sequence of negotiations over 
increasingly specific aspects of the contract, each with its 
own CP. First, the two parties negotiate over which 
contract template to use; then they move on to 
negotiations over the clauses of the contract; and finally, 
they negotiate over the detailed values of the 
NegotiatedItems specified by the clauses. Both parties 
have the opportunity to renegotiate both clauses and 
values. Finally, after both parties have signaled that they 
are done negotiating, the conversation moves into a 
confirmation phase, which is also specified by a CP. 

The state diagram for the NegotiateContract CP is shown 
in Fig. 2, which should be interpreted as follows. Both 
parties start their interaction in the state with the double 
line on its border (in this case, the oval state labeled 
start). Thereafter, the party playing role A sends a 
StartNegotiation message to the party playing role B, 
as shown by the label on the edge exiting the start state. 
The CPs of both parties then enter state labeled 
LoadChild: “NegotiateTemplate”. This in an “in-
child” state, shown as a hexagon, and means that both 
parties, upon entering the state, begin executing the named 
CP (i.e., NegotiateTemplate; cf. below), while keeping the 
state of the parent CP (i.e., NegotiateContract)  
unchanged. When the child CP is done executing it returns 
a string identifying which terminal state it ended up in, 



and control reverts to the parent CP. Executing a child CP 
is analogous to making a subroutine call.  

The transitions from an in-child state correspond to the 
possible return codes from the child CP: in this case, 
indicating that either a contract template has been agreed 
upon, or the negotiation has been cancelled. In the former 
case, the NegotiateContract CP then enters another in-
child state, this time executing the NegotiateClauses CP. 
This pattern is repeated again for the NegotiateVariables 
CP. Following the return from the NegotiateVariables CP, 
both parties either signify that they are done negotiating, 
or reopen the negotiation, either of the clauses or of the 
values. Finally, if both parties are done negotiating, the 
ConfirmContract CP is executed. 

The approach shown is sufficiently flexible that it can 
handle any degree of negotiability, such as those 
illustrated by examples below. 

Many business contracts, especially contracts between a 
business and a consumer (e.g., contract for personal credit 
cards, financial contracts such as Direct Debit/Credit 
contracts, real-estate contracts prescribed by local 
regulatory authorities etc) are such that neither the 
contract template nor the clauses are negotiable. Hence,  
the negotiations in these contract types would move 
quickly to the NegotiateVariables CP, to settle on the 
values of negotiable variables defined in the clauses of the 
given template. Attempts by one party to enter into an 
extended  negotiation over the template or the clauses 
would simply be vetoed by the other. In some cases, even 
the negotiation over values would be relatively short, as in 
the case where one party fills in the form, and the other 
party merely checks that the form has been filled out. 

Another class of business contracts, typically found, e.g., 
in the construction industry, involves a significant amount 
of negotiation of the clauses that go into it. Here, in 
certain cases there is a set of predefined clauses available–
maybe taken from a repository of standard clauses--and in 
such cases the middle level of negotiations can apply. 

At the outermost level of the CP, the contract template 
level, there is a scope of negotiation, when for example 
different regulatory bodies (e.g. state legislations) 
prescribe different templates for the same contract type. 
This can either come under the simple contracts as in the 
first example or more complex as in the second. 

One feature of the nested structure of the 
NegotiateContract CP is that it modularizes the protocols 
for the different phases of the negotiation. Since the 
details of each phase are encapsulated within a child CP, 
changing any phase is merely a matter of loading a 
different child CP.  

In addition, by splitting the negotiation into distinct 
phases, the NegotiateContract CP helps reduce the 
computational (or intellectual) effort involved in any one 
decision. For example, although the conversational 
protocol would be much simpler if all proposals and 
counterproposals consisted of complete contracts, 
partially or even completely filled out, such a protocol 
would require complete reanalysis of the contract with 
each offer, effectively treating each proposed contract as a 
completely new artifact. 

 
Figure 2. NegotiateContract conversation policy 

4.2 Negotiation of the template 
For template negotiation, the NegotiateTemplate CP 
shown in Fig. 3 is appropriate. Here the two parties 
exchange proposals for the contract template to adopt as a 
starting point: either by exchanging unambiguous names 
(i.e., URIs) of published templates, or by sending an 
actual text of the proposed template. The 
NegotiateTemplate CP’s structure is partly derived from 
the fact that there can be only one template, which must be 
agreed upon by the two parties before the negotiation can 
proceed. 

Start

LoadChild:
“NegotiateTemplate”

LoadChild:
“NegotiateClauses”

A: “StartNegotiation”

Child return: “Accepted”

LoadChild:
‘NegotiateVariables”

Value negotiation 
done

A ready to confirm

Child return: “Done”

A: “done”

Return:
“ContractReady”

Return:
“NoContract”

B: “done”

A: “Renegotiate 
clauses”

B: “Renegotiate clauses”

B: “Renegotiate 
values”

A: 
“Renegotiate 

values”

Child return: “Done”

LoadChild:
‘ConfirmContract”

Child return:
“Cancelled”

Child return:
“Cancelled”

Child return:
“Cancelled”

Child return:
“Cancelled”

Child return:“Confirmed”



 

Figure 3. NegotiateTemplate conversation policy 

 

As is shown in Fig 3, the two parties exchange offers and 
counteroffers until a template is agreed upon, or until the 
negotiation is cancelled. In either case, the 
NegotiateTemplate CP enters a terminal state, at which 
time control reverts to the parent CP, NegotiateContract. 

 

4.3 Negotiating clauses 
In negotiating clauses, it is natural for the two parties to 
take turns proposing modifications, which may be either 
adding a new clause, removing an extant one, or replacing 
one. Since the number of such modifications is 
indeterminate, it is necessary for the entire process to be 
repeatable any number of times. These two features are 
both evident in the NegotiateClauses CP, shown in Fig. 4. 
In the figure, the transitions containing multiple messages, 
such as the one connecting the state labeled A’s turn to 
the state labeled B’s reply, are shorthand for multiple 
parallel transitions, each with its own message. 

There are two obvious scenarios for clause negotiation. In 
the first scenario, the clauses themselves are predefined, 
e.g., as part of the contract template. In that case, the two 
parties, after agreeing to use a particular template, choose 
to limit the set of possible clauses to those defined in the 
template. The proposal message would contain the ID of 
the clause being proposed. 

The other scenario is when entirely new clauses are 
proposed by one or the other party. For these 
"unstructured" contracts, the proposal message contains 
the text of the clause itself. The CP specifies the syntax of 
the clause, but not its content. I.e., it would prescribe that 
the proposal must contain a well-formed XML clause 
element. 

 

Figure 4: NegotiateClauses conversation policy 

 

The latter scenario is clearly more difficult for automated 
systems to cope with. Thus we expect that, where 
predefined clauses are available, automated negotiators 
would prefer them.  

Note, however, that the NegotiateClauses CP is applicable 
to both scenarios, and even permits negotiation in 
situations where one party chooses to propose entirely 
new clauses, and the refuses even to consider them, e.g., 
because they are new. 

A variation on the NegotiateClauses CP, in which 
proposals may contain more than one clause (e.g., the 
addClause <clause> message would be replace by 
addClauses <list-of-clauses>) is also acceptable 
here, and may prove to be preferable, since it helps the 
negotiating parties deal with constellations of 
interdependent clauses. 

 

4.4 Negotiating variables 
Finally, we come to the most specific conversation policy: 
the negotiation of variables in clauses. Since, at this level, 
correlations between variables may become important, it 
is not sufficient to take up variables one at a time. Rather, 
offers consist of sets of variables. 

Figure 5 below shows a conversation policy for carrying 
out these negotiations. Note that the NegotiateVariables 
CP itself consists of two phases: first a mutually agreed-
upon set of variables (i.e., NegotiatedItems) is found, and 
then the values for those variables are established. 
Following that, both parties have an opportunity to go 

Start

Offer
Open

Return: 
“Cancelled”

Counteroffer 
Open

Return: 
“Accepted”

B:
“CounterPropose

<template>”

B: “Cancel”

A:
“CounterPropose

<template>”

A: “Accept”

A: “Propose <template>”

B: 
“Accept”

A: “Cancel”

A’s turn

A done

Return: “Done”

B’s turn

Return: 
“Cancelled”

B’s 
reply

A’s 
reply

B done

A: “addClause <clause>”
A: “deleteClause <id>”

A: “replaceClause <id> <clause>”

B: “addClause <clause>”
B: “deleteClause <id>”
B: “replaceClause

<id> <clause>”

B: “pass”

A: “accept”
A: “reject”

B: “accept”
B: “reject”

A: “cancel”
B: “cancel”

A: “done” B: “done”

B: “done”

A: “pass”

A: “done”

A: “continue”

B: “continue”



back to the beginning, and start the selection process 
again for a new set of variables.  

 

Figure 5: NegotiateVariables conversation policy 

 

This separation is convenient from the point of view of 
automating decision logic, because it separates out to 
inherently different activities: defining the attribute space 
within which one is negotiating, versus exchanging offers 
that consist of points in that space. Human decision-
makers may not have difficulty combining these two, but 
automated negotiation strategies generally presume that 
the space is fixed, and furthermore tend to work best when 
it is low-dimensional. (For an illustration of the state of 
the art in automated negotiation, see for example  [12] and 
the references therein.) 

Another CP which may sometimes be used instead of the 
NegotiateVariables CP shown in Fig. 5, is the  
Asymmetric Multi-Attribute Bidding (AMAB) CP 
described in  [9]. In the AMAB CP, one party (acting as 
the “seller”) presents sets of alternative offers, from which 
the other party (the “buyer”) selects his favorite. The 
seller may then confirm the buyer’s selection, or present 
another (presumably further refined) set of offers to the 
buyer for consideration. This sequence continues 

indefinitely. The AMAB CP is appropriate in cases where 
the negotiation is inherently asymmetric—e.g., because 
the seller has detailed knowledge of the range of options 
available, while the buyer does not.  

4.5 Confirming 
Once both parties have signaled that they are done 
negotiating, the NegotiateContract CP enters a state in 
which it executes a confirmation CP. 

A very simple CP for confirmation is the ConfirmContract 
CP, shown in Fig. 6.  This CP merely provides for one 
party to send the contract as a whole to the other party for 
verification. More advanced versions of this CP would 
include messages for electronically signing the contract, 
exchanging signed copies, and so forth.  

Figure 6. The ConfirmContract conversation policy 
  

5 Additional considerations 
Conversation support can be extended to cover a number 
of situations beyond the negotiation scenarios described 
above. In this section, we briefly mention a few of the 
more obvious cases.  

Having the conversation-support architecture in place 
means that the overhead of adding these new protocols is 
drastically reduced, because the apparatus for specifying 
and for executing these CPs is already there. The only 
things that need to be supplied are those things that will 
necessarily be specific to each individual business-i.e., the 
decision logic required to drive the CPs. 

5.1 CPs for renegotiation and variances 
The arguments in section 1 above, which advocated an 
“outcome neutral” approach to protocol design, apply to 
protocols for contract renegotiation and for  dealing with 
potential or actual violations. For example, we do not 
assume that a business will choose to exercise 
compensatory actions spelled out in a contract, even when 

Start

A’s items
proposed

Return:
“Cancelled”

B’s items
proposed

Return:
“Done”

B: 
“CounterPropose

<items>”

A: 
“CounterPropose

<items>”

A: “Propose <items>”

A’s items 
accepted

B’s items 
accepted

B: “Accept” A: “Accept”

A’s values 
proposed

B’s values 
proposed

A: “Propose <values>” B: “Propose <values>”

B: 
“CounterPropose

<values>”

A: 
“CounterPropose

<values>”

A’s values 
accepted B’s values 

accepted

A: “Accept”
B: “Accept”

A done

B done

A: “Done”

A: “Done”

B: “Done”

B: “Done”

B
: “Propose <item

s>”

A
: “Propose <item

s>”

B
: “C

ancel”

B
: “C

ancel”

A: “Cancel”

A: 
“Cancel”

B: 
“Propose 
<items>”

A: 
“Propose 
<items>”

Start

Offer
Open

Return: 
“Confirmed”

Return: 
“Cancelled”

B: “Confirm”

A: “Confirm <contract>”

B: 
“Cancel”

A: 
“Cancel”



it can, according to the contract, do so, This reflects a 
common fact of business relationships: frequently, 
businesses agree to violate contracts, for any of a wide 
variety of reasons.  In order to reach such an agreement, 
the parties involved must negotiate over what parts of the 
contract to keep in force, what parts to disregard, etc. 

Thus we advocate defining CPs for renegotiating already 
agreed-to contracts; CPs for negotiating variances or 
exceptions to contracts; and so forth, to be used at the 
discretion of the parties involved. The former are similar 
in form to the NegotiateContract CP, except that the 
template is not negotiable, since it is presumably 
determined by the actual contract in force. The latter can 
be represented as the negotiation of a temporary or short-
term contract subsidiary to the main one.  

5.2 Timeouts in CPs 
Any non-terminal state in any CP may be assigned a 
timeout. Timeouts limit the amount of time the 
conversation may stay in that state. When timeouts are 
present on normal states, they impose a limit on the 
allowed delay before one or the other party must send a 
message. When present on “in-child” states, they have the 
effect of limiting the amount of time for the execution of 
the entire child policy.  

For each state for which timeout is specified, there is an 
associated transition that specifies the new state to change 
to when the specified time has elapsed. In the CPs above, 
we have omitted these timeouts and timeout transitions for 
clarity. In general, we expect the timeout transitions 
typically to lead to a state in which the negotiation is 
cancelled, or, in more elaborate situations, to a state in a 
child CP is started to exchange messages about the 
timeout itself. E.g., one party would notify the other that a 
timeout has occurred, and that the negotiation will be 
cancelled unless a message is received on short order. 
This latter threat would then be enforced by means of 
another timeout transition, this time to a “negotiation 
cancelled” state. 

It is often the case that there is some external deadline, 
which will govern the overall time over which the contract 
negotiations can be carried out. This can be achieved by 
executing the entire NegotiateContract CP as a child of a 
another CP, and placing the deadline on the in-child state 
within which the NegotiateContract CP is executed. 

5.3 Multi-party negotiations 
The conversational approach can also be extended to 
multi-party negotiations. As noted in section  3.1, in many 
cases a negotiation involving more than two parties can be 
reduced to multiple bilateral negotiations, conducted 
serially or in parallel. However, there are still situations in 
which it would be preferable for the several parties 

involved to all negotiate together in a single, multi-way 
conversation. 

In a multi-party conversation, the conversation policies 
define roles for all participants, such that each participant 
plays a unique role. All messages are multicast to all 
participants. Care must be taken to avoid ambiguities in 
state-synchronization that could occur if multiple 
participants send messages at the same time (this is true of 
two-party conversations as well, though the problem is 
less serious there.) For example, one simple technique is 
for the CP to have participants take turns in a round-robin 
fashion.  

Another feature of such an extension is the need for a 
multi-party session management CP, which would 
describe the way in which multiple parties arrive at the 
start of the conversation, how they drop out without 
ending it, and so forth. A multi-party version of the 
NegotiateContract CP would also have to be developed. 
Beyond the obvious extensions, such as requiring 
confirmation from all negotiating parties, this latter would 
also define the ways in which some parties would simply 
decide to withdraw from the negotiations, leaving the 
others to continue as far as possible, search for a 
replacement, etc. 

6 Conclusion 
In this paper, we have laid out a set of conversation 
policies for use in contract negotiations, specified in a way 
that promotes the use of automated or semi-automated 
negotiators. 

In addition to looking at providing appropriate integration 
points between BCA and the conversation infrastructure 
architecturally, one of the interesting research directions 
would be to study links between negotiation processes and 
the rest of contract management systems. As part of this, it 
would be interesting to investigate dependences between 
deontic concepts and speech act formalism and position 
these in relation to our current business contract language. 
This is field of significant future research. 

7 Acknowledgements 
The work reported in this paper has been funded in part 
by the Co-operative Research Centre for Enterprise 
Distributed Systems Technology (DSTC) through the 
Australian Federal Government's CRC Programme 
(Department of Industry, Science & Resources) 

The authors would like to thank James Cole who has 
provided XML Schema for service contract, to Glen 
Nolan for his input into the pragmatics of contract 
negotiations, and to Prabir Nandi and Kalyani Deshpande 
for their work on the cpXML specification. 



8 References 
[1] P. Linington and S. Neal, “Using Policies in the 
Checking of Business to Business Contracts”, IEEE 4th 
International Workshop on Policies for Distributed Systems 
and Networks (Policy 2003), 2003, to appear. 

[2] Z. Milosevic and G.Dromey, “On Expressing and 
Monitoring Behaviour in Contracts”, In Proc. 6th IEEE Conf. 
on Enterprise Distributed Object Computing (EDOC-2002), 
IEEE Computer Society, 2002, pp. 3-14. 

[3] R. Lee, “A Logic Model for Electronic Contracting”, 
Decision Support Systems, 4, 27-44, 1988. 

[4] W.-J. van den Heuvel and H. Weigand, “Cross-
Organizational Workflow Integration using Contracts”, 
Business Object Component Workshop, OOPSLA 2002. 

[5] P. Mathieu and M-H. Verrons, “A generic model for 
contract negotiation”, 
www.lifl.fr/SMAC/publications/aisb02-ants.pdf 

[6] Z. Milosevic, A. Josang, T. Dimitrakios, and M.A 
Patton, “Discretionary Enforcement of Electronic Contracts”, 
In Proc. 6th IEEE Conf. on Enterprise Distributed Object 
Computing (EDOC-2002), IEEE Computer Society, 2002, 
pp. 39-50. 

[7] J. Hanson, P. Nandi, S. Kumaran, “Conversation 
Support for Business Process Integration”, In Proc. 6th IEEE 
Conf. on Enterprise Distributed Object Computing (EDOC-
2002), IEEE Computer Society, 2002, pp. 65-74. 

[8] See, for example, M. Greaves and J. M. Bradshaw, eds., 
Proc. Autonomous Agents '99 Workshop on Specifying and 
Implementing Conversation Policies, 1999. 

[9] J. Hanson, G. Tesauro, J. Kephart, E. Snible. “Multi-
agent implementation of asymmetric protocol for bilateral 
negotiations”, ACM Conference on Electronic Commerce 
(EC-03), San Diego, 2003, to appear.  

[10] H. Varian, “Economic Mechanism Design for 
Computerized Agents”, In Proc. First Usenix Conference on 
Electronic Commerce, New York, 1995.  

[11] http://www.alphaworks.ibm.com/webservices 

[12] G. Tesauro, “Efficient Search Techniques for multi-
attribute bilateral negotiation strategies”, In Proc. Third 
International Symposium on Electronic Commerce (ISEC-
02), IEEE Computer Society, 2002.  

[13] “ebXML Business Process Specification Schema”, 
www.ebxml.org/specs/ebBPSS.pdf 

[14] “cpXML: Conversation Policy XML Version 1.0” , 
www.research.ibm.com/convsupport/papers/cpXML-
v1.htm  

[15]  M. Rebstock, “An Application Architecture for 
Supporting Interactive Bilateral Electronic Negotiations”, In 
K. Bauknecht, S. K. Madria, and G. Pernul (eds.), Electronic 

Commerce and Web Technologies. Springer, New York, pp. 
196-205. 

[16] Z. Milosevic, D.Arnold, and L.O’Connor, “Inter-
enterprise Contract Architecture For Open Distributed 
Systems:Security Requirements”, WETICE’96, Stanford 
Univeristy. 1996. 

[17] J. Searle, Speech Acts, Cambridge University Press, 
1969. 

 

http://www.lifl.fr/SMAC/publications/aisb02-ants.pdf
http://www.ebxml.org/specs/ebBPSS.pdf
http://www.research.ibm.com/convsupport/papers/cpXML-v1.htm
http://www.research.ibm.com/convsupport/papers/cpXML-v1.htm

	Introduction
	Conversation support architecture
	Contract Negotiation
	Contract negotiation requirements
	Business Contract Language

	Conversation policies for negotiation
	NegotiateContract CP
	Negotiation of the template
	Negotiating clauses
	Negotiating variables
	Confirming

	Additional considerations
	CPs for renegotiation and variances
	Timeouts in CPs
	Multi-party negotiations

	Conclusion
	Acknowledgements
	References

