
Compliance checking between business processes
and business contracts

Guido Governatori∗, Zoran Milosevic∗† and Shazia Sadiq∗
∗School of ITEE, The University of Queensland, Brisbane, QLD 4072, Queensland, Australia

Email: {guido,zoran,shazia}@itee.uq.edu.au
†Deontik, Australia, Email: zoran@deontik.com

Abstract—It is a typical scenario that many organisations have
their business processes specified independently of their business
contracts. This is because of the lack of guidelines and tools
that facilitate derivation of processes from contracts but also
because of the traditional mindset of treating contracts separately
from business processes. This paper provides a solution to one
specific problem that arises from this situation, namely the lack
of mechanisms to check whether business processes are compliant
with business contracts. The central part of the paper are logic
based formalism for describing both the semantics of contract
and the semantics of compliance checking procedures.

I. INTRODUCTION

Many organisations are striving to automate their business
processes to improve their internal efficiency but they have
different levels of awareness about the impact of external
constraints on their processes. The constraints can arise from
various regulatory and legislative requirements, including in-
ternational trade agreements, but also from business con-
tracts that regulate cross-organisational interactions. This paper
considers constraints arising from business contracts and the
implications of such limited awareness as a factor that has
led to different levels of automation of business contract and
business processes and often their stark separation.
It is this state of affairs, but also different business life

cycle of business contracts and business processes, as well
as different domain knowledge of experts constructing them,
that requires a generic approach to checking compatibility of
business contracts and business processes. This compatibility
will be of even higher importance in future in the likely case
of organisations wishing to rely more on enterprise contract
management systems as a way of more direct integration of
contracts and business processes and flexibility in changes that
can propagate both directions.
In order to motivate the need for such compatibility check-

ing, we consider two distinct scenarios that correspond to two
ends of business contract automation spectrum. We describe
some implications of these on incompatibility between the two
sub-systems.
The most typical scenario today is one in which organisa-

tions have substantial separation of contracts from business
processes because they still treat contracts as legal documents
detached from their governance role for cross-organisational
processes. The contract management activities are mostly
manual and the only connection can be certain specialised

contract management roles that look after contracts and oc-
casionally have insight into the details of business processes.
In this case there is no incompatibility between automation
aspects (because of the mere lack of electronic support for
contracts) but there is incompatibility in terms of efficiency
and effectiveness between these two different sub-systems.
If such organisations consider automation of their contracts
and aim at ensuring compliance between contract conditions
and processes structure, they need to have a mechanism for
understanding impact of the existing business processes on
new contracts. The impact can be in terms of rules defining
best practices currently implemented or in terms of their future
resource commitments, maybe as part of some other contracts.
So, before an organisation agrees on new contracts, it would
benefit from checking whether the desired contract conditions
are compatible with existing processes, to avoid undesired
consequences of inability to fulfil its obligations.
On the other end of the spectrum is scenario covering the

most sophisticated support for business contracts, provided
through a state-of-art enterprise contract management system,
or as part of organisations ERP systems. These systems
support contract authoring and various kind of contract mon-
itoring, but they rarely provide capability to derive business
processes in a way that is compliant with business contract.
This is perhaps due to inherent difficulty of such deriva-
tion arising from different style of behavioural descriptions
associated with contracts and processes, and their different
purpose, as discussed in [14]. It is evident that this scenario
also requires a mechanism to facilitate compatibility checking
between processes and contracts. In fact, this mechanism can
be regarded as part of a general methodology for deriving
processes from contracts.
In summary, each of these scenarios requires a mechanism

to facilitate better analysis of mutual dependencies between
constraints stated in contracts and business process represen-
tation. This paper presents an approach for checking such
dependences and ensuring compatibility between contracts
and processes. This approach exploits our previous results
related to the formal expressions of business contracts and our
previous involvement in business process research and stan-
dardisation. We use our earlier example of business contracts
presented in [7], to facilitate presentation and continuity of
idea development.
In the next section we introduce the contract used a refer-

Proceedings of The 10th International Enterprise Distributed Object Computing Conference (EDOC 2006), pp. 221–232.
c© 2006 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
The original publication is available at doi: 10.1109/EDOC.2006.22

http://dx.doi.org/10.1109/EDOC.2006.22

ence to illustrate the notions we are going to discuss in the
paper. In Section III we summarise key concepts and rules of a
Formal Contract Language (FCL) and show how FCL expres-
sions can reduce to normal forms (Section IV) and we provide
a semantics for it. We then introduce an example of a business
process, intended to support the reference contract. We use
standard BPMN notation to represent business process and
then derive and an event-based specification for this process
(Section VI). This intermediate representation was needed to
facilitate mapping of contract conditions on behaviour patterns
in the business process. The semantics of this mapping is then
shown.
Note that although the paper specifically focuses on con-

tracts as source of policies and constraints, the reasoning
will be quite similar when considering the impact of external
policies.

II. A SAMPLE CONTRACT

This section introduces an example of a business contract,
initially introduced in [7]. This is an example of a service
contract between an ISP provider and a Purchaser of ISP
services.The contract is structured in terms of a number of
clause groups, each of which contains contract conditions that
will be analysed and formalised in the subsequent sections.

CONTRACT OF SERVICES
This Deed of Agreement is entered into as of the Effective Data
identified below.
BETWEEN ABC Company (To be known as the Purchaser)
AND ISP Plus (To be known as the Supplier)
WHEREAS (Purchaser) desires to enter into an agreement to pur-
chase from (Supplier) Application Server (To be known as (Service)
in this Agreement).
NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser)
shall enter into an agreement subject to the following terms and
conditions:
1 Definitions and Interpretations
1.1 Price is a reference to the currency of the Australia unless

otherwise stated.
1.2 This agreement is governed by Australia law and the parties

hereby agree to submit to the jurisdiction of the Courts of the
Queensland with respect to this agreement.

2 Commencement and Completion
2.1 The commencement date is scheduled as January 30, 2006.
2.2 The completion date is scheduled as January 30, 2007.
3 Price Policy
3.1 A “Premium Customer” is a customer who has spent more

that $10000 in services. Premium Customers are entitled a 5%
discount on new orders.

3.2 Services marked as “special order” are subject to a 5%
surcharge. Premium customers are exempt from special order
surcharge.

3.3 The 5% discount for premium customers does not apply for
services in promotion.

4 Purchase Orders
4.1 The (Purchaser) shall follow the (Supplier) price lists at

http://supplier/cat1.html

4.2 The (Purchaser) shall present (Supplier) with a purchase order
for the provision of (Services) within 7 days of the commence-
ment date.

5 Service Delivery
5.1 The (Supplier) shall ensure that the (Services) are avail-

able to the (Purchaser) under Quality of Service Agreement
(http://supplier/qos1.htm). (Services) that do not conform to the
Quality of Service Agreement shall be replaced by the (Sup-
plier) within 3 days from the notification by the (Purchaser),
otherwise the (Supplier) shall refund the (Purchaser) and pay
the (Purchaser) a penalty of $1000.

5.2 The (Supplier) shall on receipt of a purchase order for (Ser-
vices) make them available within 1 days.

5.3 If for any reason the conditions stated in 4.1 or 4.2 are not met,
the (Purchaser) is entitled to charge the (Supplier) the rate of
$ 100 for each hour the (Services) are not delivered.

6 Payment
6.1 The payment terms shall be in full upon receipt of invoice.

Interest shall be charged at 5 % on accounts not paid within
7 days of the invoice date. The prices shall be as stated in the
sales order unless otherwise agreed in writing by the (Supplier).

6.2 Payments are to be sent electronically, and are to be performed
under standards and guidelines outlined in PayPal.

7 Termination
7.1 The (Supplier) can terminate the contract after three delayed

payments.

III. FCL
We now introduce the logic (FCL) we will use to reason

about contracts. FCL was introduced in [7] for the formal
analysis of business contracts and it is based on previous work
on formal representation of contracts [5], logic of violations
[8], and normative positions based on Deontic Logic with
Directed Obligations [11], [10]. The language of FCL consists
of two sets of atomic symbols: a numerable set of propositional
letters p, q, r, . . . , intended to represent the state variables of
a contract and a numerable set of event symbols α, β, γ, . . .
corresponding to the relevant events in a contract; complex
events can be obtained from simpler events using the sequence
operator “;” (e.g., α;β means that event α is followed by event
β), conjunction operator ∧ (e.g., α∧β meaning that both event
α and event β are expected to occur), and the disjunction
operator ∨ (e.g., α ∨ β meaning that either of the two events
α and β are expected to occur). Formulas of the logic are
constructed using the deontic operators O (for obligation), P
(for permission), negation ¬ and the non-boolean connective
⊗ (for the Contrary-To-Duty (CTD) operator). The formulas
of FCL will be constructed in two steps according to the
following formation rules:

• every propositional letter is a literal;
• every event symbol is a literal;
• the negation of a literal is a literal;
• if X is a deontic operator and l is a literal then Xl and

¬Xl are modal literals.
After we have defined the notions of literal and modal literal
we can use the following set of formation rules to introduce
⊗-expressions, i.e., the formulas used to encode chains of
obligations and violations.

• every modal literal is an ⊗-expression;

• if Ol1, . . . , Oln are modal literals and ln+1 is a literal,
then Ol1 ⊗ . . .⊗Oln and Ol1 ⊗ . . .⊗Oln ⊗ Pln+1 are
⊗-expressions.

The connective ⊗ permits combining primary and Contrary-
To-Duty obligations into unique regulations. The meaning of
an expression like OsA ⊗ OsB ⊗ OsC is that the primary
obligation for s is A, but if A is not done, then s has the
obligation to do B. But if event B fails to be realised, then
s has the obligation to do C. Thus B is the reparation of the
violation of the obligation OsA (represented that A does not
hold, i.e., that the negation of A, ¬A holds). Similarly C is
the reparation of the obligation OsB, which is force when the
violation of A occurs.
The formation rules for ⊗-expressions allow a permission

to occur only at the end of such expressions. This is due to
the fact that a permission can be used as a reparation of a
violation, but it is not possible to violate a permission, thus it
makes no sense to have reparations to permissions.
Each condition or policy of a contract is represented by a

rule in FCL, where a rule is an expression

r : A1, . . . , An $ C

where r is the name/id of the policy, A1, . . . , An, the an-
tecedent of the rule, is the set of the premises of the rule
(alternatively it can be understood as the conjunction of all
the literals in it) and C is the conclusion of the rule. Each Ai

is either a literal or a modal literal and C is an ⊗-expression.
The meaning of a rule is that the normative position (obli-

gation, permission, prohibition) represented by the conclusion
of the rule is in force when all the premises of the rule hold.
Thus, for example, the second part of clause 5.1 of the contract
(“the supplier shall refund the purchaser and pay a penalty of
$1000 in case she does not replace within 3 days a service
that does not conform with the published standards”) can be
represented as1

r : ¬p,¬α $ OSβ

where the propositional letter p means “a service has been
provided according to the published standards”, α is the event
symbol corresponding to the event “replacement occurred
within 3 days”, and β is the event symbol corresponding to
the event “refund the customer and pay her the penalty”. The
policy is activated, i.e., the supplier is obliged to refund the
customer and pay her a penalty of $1000, when the condition
¬p is true (i.e., we have a faulty service), and the event
“replacement occurred within 3 days” lapsed, i.e., its negation
occurred.

IV. NORMAL FORMS

We introduce transformations of an FCL representation of
a contract to produce a normal form of the same (NFCL). A
normal form is a representation of a contract based on an FCL

1In what follows we will use OS and PS fot the obligation and permission
operators relative to the Supplier , and OP and PP for the Purchaser . Os

and Ps will be used for a generic subject.

specification containing all contract conditions that can gen-
erated/derived from the given FCL specification. The purpose
of a normal form is to “clean up” the FCL representation of
a contract, that is to identify formal loopholes, deadlocks and
inconsistencies in it, and to make hidden conditions explicit.
In the rest of this section we introduce the procedures

to generate normal forms. First (Section IV-A) we describe
a mechanism to derive new contract conditions by merging
together existing contract clauses. In particular we link an
obligation and the obligations triggered in response to viola-
tions of the obligation. Then, in Section IV-B, we examine the
problem of redundancies, and we give a condition to identify
and remove redundancies from the formal specification of a
contract.

A. Merging Contract Conditions
One of the features of the logic of violations is to take two

rules, or clauses in a contract, and merge them into a new
clause. In what follows we will first examine some common
patterns of this kind of construction and then we will show
how to generalise them.
Let us consider a policy like (in what follows Γ and ∆ are

sets of premises)
Γ $ OsA.

Given an obligation like this, if we have that the violation of
OsA is part of the premises of another policy, for example,

∆,¬A $ Os′C,

then the latter must be a good candidate as reparational
obligation of the former. This idea is formalised is as follows:

Γ $ OsA ∆,¬A $ Os′C

Γ,∆ $ OsA⊗Os′C

This reads as follows: given two policies such that one is
a conditional obligation (Γ $ OsA) and the antecedent of
second contains the negation of the propositional content of
the consequent of the first (∆,¬A $ Os′C), then the latter
is a reparational obligation of the former. Their reciprocal
interplay makes them two related norms so that they cannot
be viewed anymore as independent obligations. Therefore we
can combine them to obtain an expression (i.e., Γ,∆ $ OsA⊗
Os′C) that exhibits the explicit reparational obligation of the
second norm with respect to the first. Notice that the subject
of the primary obligation and the subject of its reparation can
be different, even if very often in contracts they are the same.
Suppose the contract includes the rules

r : Invoice $ OP PayWithin7Days
r′ : ¬PayWithin7Days $ OP PayWithInterest .

From these we obtain

r′′ : Invoice $ OP PayWithin7Days ⊗OP PayWithInterest .

We can also generate chains of CTDs in order to deal
iteratively with violations of reparational obligations. The
following case is just an example of this process.

Γ $ OsA⊗OsB ¬A,¬B $ OsC

Γ $ OsA⊗OsB ⊗OsC

For example we can consider the situation described by Clause
5.1 of the contract. Given the rules

r : Invoice $ OSQualityOfService ⊗
OSReplace3days

r′ : ¬QualityOfService,

¬Replace3days $ OSRefund&Penalty

from which we derive the new rule
r′′ : Invoice $ OSQualityOfService ⊗

OSReplace3days ⊗
OSRefund&Penalty .

The above patterns are just special instances of the general
mechanism described in details in [8], [5].

B. Removing Redundancies
Given the structure of the inference mechanism it is possible

to combine rules in slightly different ways, and in some cases
the meaning of the rules resulting from such operations is al-
ready covered by other rules in the contract. In other cases the
rules resulting from the merging operation are generalisations
of the rules used to produce them, consequently, the original
rules are no longer needed in the contract. To deal with this
issue we introduce the notion of subsumption between rules.
Intuitively a rule subsumes a second rule when the behaviour
of the second rule is implied by the first rule.
We first introduce the idea with the help of some examples

and then we show how to give a formal definition of the notion
of subsumption appropriate for FCL.
Let us consider the rules

r : Service $ OSQualityOfService ⊗
OSReplace3days ⊗
OSRefund&Penalty ,

r′ : Service $ OSQualityOfService ⊗
OSReplace3days.

The first rule, r, subsumes the second r′. Both rules state
that after the supplier has provided the service she has
the obligation to provide the service according to the pub-
lished standards, if she violates such an obligation, then the
violation of QualityOfService can be repaired by replac-
ing the faulty service within three days (OSReplace3days).
In other words OSReplace3days is a secondary obliga-
tion arising from the violation of the primary obligation
OSQualityOfService . In addition r prescribes that the vio-
lation of the secondary obligation OSReplace3days can be
repaired by OSRefund&Penalty , i.e., the seller has to refund
the buyer and in addition she has to pay a penalty.
As we discussed in the previous paragraphs the conditions

of a contract cannot be taken in isolation in so far as they exist
in a contract. Consequently the whole contract determines the
meaning of each single clause in it. In agreement with this
holistic view of norms we have that the normative content of
r′ is included in that of r. Accordingly r′ does not add any
new piece of information to the contract, it is redundant and
can be dispensed from the explicit formulation of the contract.

Another common case is exemplified by the rules:
r : Invoice $ OP PayWithin7Days ⊗OP PayWithInterest
r′ : Invoice,¬PayWithin7Days $ OP PayWithInterest .

The first rule says that after the seller sends the invoice
the buyer has one week to pay it, otherwise the buyer has
to pay the principal plus the interest. Thus we have the
primary obligation OP PayWithin7Days , whose violation is
repaired by the secondary obligation OP PayWithInterest ,
while, according to the second rule, given the same set
of circumstances Invoice and ¬PayWithin7Days we have
the primary obligation OP PayWithInterest . However, the
primary obligation of r′ obtains when we have a violation of
the primary obligation of r. Thus the condition of applicability
of the second rule includes that of the first rule, which then is
more general than the second and we can discard r′ from the
contract.
The intuitions we have just exemplified is captured by the

following definition.

DEFINITION 1 Let r1 : Γ $ A ⊗ B ⊗ C and r2 : ∆ $ D
be two rules, where A =

⊗m
i=1 Ai, B =

⊗n
i=1 Bi and C =⊗p

i=1 Ci. Then r1 subsumes r2 iff
1) Γ = ∆ and D = A; or
2) Γ ∪ {¬A1, . . . ,¬Am} = ∆ and D = B; or
3) Γ ∪ {¬B1, . . . ,¬Bn} = ∆ and D = A⊗

⊗k≤p
i=0 Ci.

The intuitions is that the normative content of r2 is fully
included in r1. Thus r2 does not add anything new to the
system and it can be safely discarded.
Conflicts often arises in contracts. What we have to deter-

mine is whether we have genuine conflicts, i.e., the contracts is
in some way flawed or whether we have prima-facie conflicts.
A prima-facie conflict is an apparent conflict that can be
resolved when we consider it in the context where it occurs
and if we add more information the conflict disappears. FCL
has facilities to detect conflicts and to resolve them. However,
in this paper we are not interested in such features, and we
will assume that a contract does not result in any conflict. For
the details about how to detect conflicts see [8], [7]

C. FCL Normal Forms
We now apply the logical machinery presented to validate

and transform business contracts into the logical representation
in a language apt to monitor the execution of a contract. This
consists of the following three steps:
1) Starting from a formal representation of the explicit
clauses of a contract we generate all the implicit condi-
tions that can be derived from the contract by applying
the merging mechanism of FCL.

2) We can clean the resulting representation of the contract
by throwing away all redundant rules according to the
notion of subsumption.

3) Finally we use the conflict identification rule to label
and detect conflicts.

In general the process at step 2 must be done several times in
the appropriate order as described above. The normal form

of a set of rules in FCL is the fixed-point of the above
constructions. A contract contains only finitely many rules and
each rule has finitely many elements. In addition it is possible
to show that the operation on which the construction is
defined is monotonic [8], thus according to standard set theory
results the fixed-point exists and it is unique. However, we
have to be careful since merging first and doing subsumption
after produces different results from the opposite order (i.e.,
subsumption first and merging after), or by interleaving the
two operations.

D. Representing the Contract in FCL
Let us now see how to represent the contract of Section

II in FCL. Usually a contract comprises two types of clauses:
definitional clauses giving the meaning of the terms used in the
contract and clauses specifying the normative behaviours (i.e.,
giving the obligations, permissions, prohibitions the signing
parties of the contract are subject to). In this paper we will
concentrate only on the normative specifications of a contract.
Accordingly, we will ignore Sections 1, 2, and 3 of the
contract, and similarly for clause 4.1 which states what the
basic prices are and clause 6.2 that states what a payment is
(see [5], [6], for a representation of these clauses in the spirit
of an extension of FCL).

r4.2 : begin $ OP FirstOrder7Days
r5.1a : Service $ OSQualityOfService
r5.1b : ¬QualityOfService $ OSReplace3days
r5.1c : ¬Replace3ays $ OSRefund&Penalty
r5.2 : PurchaseOrder $ OSDeliver1day
r5.3a : Service,¬QualityOfService,¬Replace3days,

¬Refund&Penalty $ PP ChargeSupplier
r5.3b : PurchaseOrder ,¬Deliver1day $ PP ChargeSupplier
r6.1 : Invoice $ OP PayWithin7days ⊗OP PayWithInterest
r7.1 : 3LatePayments $ PSTerminateContract

The normalisation process give us the following rules

r4.2 : begin $ OP FirstOrder7Days
r5.1 : Service $ OSQualityOfService ⊗

OSReplace3days ⊗
OSRefund&Penalty ⊗
PP ChargeSupplier

r5.2 : PurchaseOrder $ OSDeliver1day ⊗ PP ChargeSupplier
r6.1 : Invoice $ OP PayWithin7days ⊗OP PayWithInterest
r7.1 : 3LatePayments $ PSTerminateContract

V. IDEAL SEMANTICS
In a way, FCL constraint expressions for a contract define

a behavioural and state space which can be used to analyse
how well different behaviour execution paths (including state
constraints) comply with the FCL constraints. Our aim is to
use this analysis as a basis for deciding whether execution
paths of a business process are compliant with the FCL and
thus with the contract. The central part of this compliance
checking is given by the notions of ideal, sub-ideal, non-ideal
and irrelevant situations which will be introduced and defined
after two simple motivating examples are given.

Consider the FCL obligation rule related to our contract:

WeekDay ,FaultMessageEvent $ OSRepair24hours

stating that on a week day, when a fault message occurs, the
service provider is obliged to repair the fault within 24hrs.
Assume now that one possible execution path from a process

is:
1) a FaultMessageEvent is received from a premium cus-
tomer on a week day

2) the service provider reacts by (in the order):
a) sending an apology message,
b) repairing the fault within 24 hours and
c) sending a reparation confirmation message

When checking compliance of this execution path with the
obligation it is obvious that the obligation is fulfilled be-
cause the fault is fixed within 24 hours. Notice that the
execution path also includes additional conditions such as
PremiumCustomer (state variable) sending of two additional
messages (an apology message, and a reparation confirmation
message) which are not critical for the obligation.
Consider another example:

WeekDay ,PremiumCustomer ,

FaultMessageEvent $ OSrepair12hours

This reflects the requirement for a faster reaction time for
premium customer. Assume we have the following situation:

WeekDay ;FaultMessageEvent

Obviously, this situation is not sufficient for the
OSrepair12hours to be activated.

A. FCL expressions and behavioural execution paths
We now introduce the concepts of ideal, sub-ideal and non-

ideal situations to describe various degrees of compliance
between execution paths and FCL constraints. We will also
provide a semantic interpretation of FCL rules in terms of
ideal, sub-ideal, non-ideal and irrelevant situations, which we
refer to as Ideal Semantics.
Intuitively an ideal situation is a situation where execution

paths do not violate FCL expressions, and thus the execution
paths (which will then correspond to processes that are related
to the contract) are fully compliant with the contract. A sub-
ideal situation is situation where there are some violations, but
these are repaired, in the CTD sense. Accordingly, processes
resulting in sub-ideal situations are still compliant to a contract
even if they provide non-optimal performances of the contract.
A situation is non-ideal if it violates a contract (and the
violations are not repaired). In this case a process resulting
in a non-ideal situation does not comply with the contract.
There are two possible reasons for a process not to comply
with a contract: 1) the process executes some tasks which
are prohibited by the contract (or equivalently, it executes the
opposite of obligatory tasks); 2) the process fails to execute
some tasks required by the contract. Finally a situation is
irrelevant for a contract if no rule is applicable in the situation.

Irrelevant situations correspond to states of affairs where a
contract is silent about them.
In the rest of this section we provide a formal definition for

these concepts.
As discussed in Section IV, for every FCL representation

of a contract its normal form contains all conditions that
can be derived from the contract and redundant clauses are
removed. Thus normal forms are the most appropriate means
to determine whether a process conforms with a contract.
Accordingly, we have to use the normal form of a contract and
not the contract itself to determine whether a business process
complies with the contract. We now define conditions under
which we are able to determine whether a situation complies
with a contract or if it represents a violation of some clauses.
To this end, we shall define a situation to be a pair (L, S)
where L is a set of literals representing states and S is a
pattern (sequence) of events.
In what follows we will consider the rules in the normal

form for a contract. In addition every FCL rule

B1, . . . , Bm $ A1 ⊗ . . .⊗An

will be represented as

Γ, E $ A1 ⊗ . . .⊗An

where Γ is the set of state literals in {B1, . . . , Bm} and E
is the conjunction of the event literals in {B1, . . . , Bm}, and
1 ≤ n. For example, given the rule

WeekDay ,PremiumCustomer ,

FaultMessageEvent ,RequestOnSite $ OSSendTechnician

we have that

Γ = {WeekDay ,PremiumCustomer}
E = FaultMessageEvent ∧ RequestOnSite

DEFINITION 2 Given two sequences of events S and S′, we
say that S′ is a subsequence of S, if every element of S′ is an
element of S, and the elements of S′ occur in the same order
as they occur in S.

For example, given the sequence of events S = α;β; γ; δ; ε
the sequence β; ε is a subsequence of S but γ;β is not since
γ occurs before β in γ;β while it occurs after β in S.
First of all we define when a situation is either ideal, sub-

ideal, non-ideal or irrelevant with respect to a contract rule.

DEFINITION 3
• A situation s = (L, S) is ideal with respect to a rule

Γ, E $ A1⊗· · ·⊗An iff if Γ ⊆ L and E is a subsequence
of S, then E;A1 is a subsequence of S.

• A situation s = (L, S) is sub-ideal with respect to a rule
Γ, E $ A1 ⊗ · · · ⊗ An iff if Γ ⊆ L, E is a subsequence
of S and ∃Ai, 1 < i ≤ n such that ∀Aj , j < i
E;¬A+

1 ; . . . ;¬A+
j ;Ai is a subsequence of S.2

2With ¬A+
k we denote 0 or 1 occurrence of ¬Ak in a sequence of events.

• A situation s = (L, S) is non-ideal with respect to a rule
Γ, E $ A1⊗ · · ·⊗An iff Γ ⊆ L and E is a subsequence
of S and s is neither ideal nor sub-ideal.

• A situation s = (L, S) is irrelevant with respect to a rule
Γ, E $ A1⊗ · · ·⊗An iff it is neither ideal nor sub-ideal
nor non-ideal.

Returning to our first example, Γ = {WeekDay} and the
sequence of events E = FaultMessageEvent ;Repair24hours
L is {WeekDay ,PremiumCustomer} and the sequence of
events S is

S = FaultMessageEvent ;SendApologyMessage;
Repair24hours;SendReparationConfirmationMessage

So, it is true that Γ ⊆ L, and E and E;Repair24hours are
subsequences of L
According to Definition 3, a situation is ideal with respect to

a norm if the rule is not violated; sub-ideal when the primary
obligation is violated but the rule allows for a reparation,
which is satisfied; non-ideal when the primary obligation and
all its reparations are violated, and irrelevant when the rule
is not applicable. Definition 3 is concerned with the status
of a situation with respect to a single rule, while a contract
consists of many rules, thus we have to extend this definition
to cover the case of a set of rules. In particular we will extend
it considering all rules in the normal form for a contract
containing all rules inherent to the contract.

DEFINITION 4
• A situation s is ideal with respect to a contract normal
form iff there is no rule in the normal form for which s
is either sub-ideal or non-ideal or irrelevant.

• A situation s is sub-ideal with respect to a contract
normal form iff there is a rule for which s is not irrelevant
and it is sub-ideal, and there is no norm in the normal
form for which s is non-ideal.

• A situation s is non-ideal with respect to a contract
normal form iff there is no rule in the normal form for
which s is not irrelevant and it non-ideal.

• A situation s is irrelevant with respect to a contract
normal form iff for all rules in the normal form s is
irrelevant.

Definition 4 follows immediately from the intuitive interpre-
tation of ideality and the related notions we have provided in
Definition 3. On the other hand, the relation between a normal
form and the contract from which it is obtained seems to be
a more delicate matter. A careful analysis of the conditions
for constructing a contract normal form allows us to state the
following general criterion:

DEFINITION 5 A situation s is ideal (sub-ideal, non-ideal,
irrelevant) with respect to a contract FCL if s is ideal (sub-
ideal, non-ideal, irrelevant) with respect to the contract normal
form from FCL.

It is worth noting that Definition 5 shows the relevance of the
distinction between a contract and its normal form. This holds
in particular for the case of sub-ideal situations. Suppose you

have an FCL contract consisting of the rules
$ OsA ¬A $ OsB

The corresponding contract normal form is
$ OsA⊗OsB

While the situation with ¬A;B is sub-ideal with respect to the
latter, it would be non-ideal for the former. In the first case,
even if ¬A $ B expresses in fact an implicit reparational
obligation of $ A, this is not made explicit. Key point here
is that there was no link between the primary and reparation
obligations in the contract, but this is made explicit in the
normal form. So, there exists a situation which apparently
accomplishes a rule and violates the other without satisfying
any reparation. This conclusion cannot be accepted because
it is in contrast with our intuition according to which the
presence of two rules like $ A and ¬A $ B must lead to a
unique regulation. For this reason, we can evaluate a situation
as sub-ideal with respect to an FCL contract only if it is sub-
ideal with respect to its normal form.

B. Processes as Behaviour Execution Paths
In this section we treat business process fragments in terms

of behaviour execution paths. This is a generic mechanism we
can use to check compliance between business processes and
business contracts.
As we have argued before there are two ways in which a

process does not comply with a contract (or a contract rule).
1) It explicitly violates an obligation;
2) If fails to perform a required task.

For example consider the rule
α $ Osβ ⊗Osγ

which means that, if event α occurred then this must be
followed by β, or in alternative, in case β does no occur,
it must be followed by γ.
According to the intuitive reading and Definition 3, a

situation is
• ideal if it has α;β as its subsequence;
• sub-ideal if it has either of the following as subsequences

α;¬β; γ, α; γ.
• not-ideal if it has α has a subsequence, but no subse-
quence extending α has β or γ as its members.

Let us now consider the process
π = δ;α; ε.

This process results in a non-ideal situation: it has α as one
of its subsequences, but it does not contain β or γ. So it not
compliant because it fails to fulfil the obligation Osβ.
The process3

π′ = δ;α; ε;¬β

3Notice that here we ignore the distinction whether β must immediately
follow α, or just follows it. This this distinction can be made more precise with
the introduction of temporal notions either as timestamps or based on intervals,
for example using Allen’s interval algebra [1], [2] as in [12]. However, this
distinction, while important for properly representing business process, is not
essential to the discussion of the present paper, since the argument will carry
over unchanged to those more complex and powerful formalisms.

is also not compliant because in this case it presents an explicit
violation of the obligation Osβ. The main difference between
π and π′ is that π can be made (fully) compliant by extending
it with β, while π′ either is revised by first removing ¬β and
then inserting a sub-process corresponding to β, or resulting
in a sub-ideal situation by extending it by γ.

C. Ideal Semantics for the Contract

In Section IV-D we have shown the FCL representation of
the contract an the resulting normal form. Here we describe
the minimal behaviours corresponding to ideal, sub-ideal and
non-ideal situation for the normal form of the contract.
The minimal non-trivial ideal situation for rule r4.2 is when

L = ∅ and
S1 = begin;FirstOrder7Days

and non-ideal if

S2 = begin;¬FirstOrder7Days

For rule r5.1 the minimal non-trivial ideal situation is when
L = ∅ and

S3 = Service;QualityOfService

while the situations where S is either of the following

S4 = Service;¬QualityOfService;Replace3days
S5 = Service;¬QualityOfService;

¬Replace3days;Refund&Penalty

are sub-ideal situations because there are events that must be
executed in case of violations of prior obligations; while the
following

S6 = Service;¬QualityOfService;¬Replace3days;Refund
S7 = Service;¬QualityOfService;¬Replace3days;Penalty

are non-ideal situations, since the last possible reparation
(Refund&Penalty) is not completely fulfilled.
For r5.2 we have

S8 = PurchaseOrder ;Deliver1day

is the minimal non-trivial ideal situation, while

S9 = PurchaseOrder ;¬Deliver1day

is non-ideal.
Finally for r6.1, the minimal non trivial situation is when

S10 = Invoice;PayWithin7days

while

S11 = Invoice;¬PayWithin7days;PayWithInterest

is sub-ideal, and

S12 = Invoice;¬PayWithin7days;¬PayWithInterest

is not ideal, and then it does not comply with the contract.

Fig. 1. BPMN Diagram for Processes in Service Contract

VI. PROCESSES AND CONTRACTS

This section presents one specific implementation of a
business process that implements key behaviour fragments of
the service contract. We will assume that this model captures
the key interactions between Supplier and Purchaser and some
internal interactions within each of the parties as they are
currently implemented. Our aim is to determine compliance
of a business process with a contract.
In order to facilitate compliance checking we will aim to

express business process in a form that is similar in style
to the formalism of business contract, i.e. in terms of event-
oriented behaviour. We begin first by expressing this business
process using BPMN notation. We chose BPMN [13] for two
reasons. Firstly, it comes with a number of concepts that are
suitable for the expression of both cross-organisational and
internal business processes, both of which are needed when
refining contract behaviours. Second, BPMN is well suited
for the use of business analysts and other business people
involved in managing and monitoring processes. It is our belief
that these kind of experts will be producing business process
representation for the existing processes. Besides, this is a
similar level of abstraction to that used in specifying business
contracts.
It is important to state however, that BPMN notation re-

quires additional specification details to be interpreted by un-
derlying process engines. While the current version of BPMN
specification provides such details through the inclusion of
mapping rules between BPMN and BPEL [3] concepts, in this
paper we provide added details by mapping the BPMN speci-

fication onto an event pattern language. Recall that this target
was selected because the specification of contract condition is
done in terms of event conditions and since both the source
and target languages are event oriented, the mappings between
these are more straightforward.

A. BPNM Formulation: The Service Contract

Let us assume that a business analyst has come up with
a process representation as shown in Figure 1. In the figure
key obligations are stated as BPMN annotations next to the
actions that are expected to occur. We also use a number of
timers that reflect temporal constraints on when the obligations
should be discharged. The mapping from this process into a
process event description follows the rules below:

• A BPMN intermediate event representing message arrival
is a process event, e.g., a message signifying that new
contract was signed, eNewContract ;

• A BPMN intermediate event representing timer is a
process event;

• A BPMN message flows origin is a process event; note
that in BPMN both sending and receiving of a message
is an event, but to simplify presentation we only regarded
the sending of a message as a process event event;

• Start of a BPMN task or process is a process event;
• The completion of a BPMN task or process is a process
event;

• BPMN does not specify when a message flow is to
be triggered from a task, so we will assume that it is
triggered immediately following the start of this task (e.g.,

as in DeliverService and CreateInvoice tasks), unless
the message is created when other change state occurs
within this task, as in ProblemDetected message sent
out of the UseService sub-process; this event will be
sent when its corresponding guard in an process event
description will be set to true.

These events can be combined into more complex structures.
We use three simple operators to produce a simple event
language used only for the purpose of illustrating the mapping
from contracts to processes. We note that a more detailed
mapping from BPMN into a more sophisticated event language
is subject of our other research topic. Three simple event
operators are used to describe their temporal causality (i.e.,
sequence), depicted with the ; symbol, their alternative paths
(OR) or they simultaneous triggering (AND).
We assumed that a business modeller using BPMN needed a

way to describe a common requirement that some task must be
completed within a particular period of time, and if this is not
the case then an alternative execution path need to be taken.
There is currently no notation for this scenario. In fact, this
can be regarded as a common pattern that can be modelled by
using the BPMN intermediate timer event and a decision node
together with the required task. So, it is upon the activation
of the task in question that the timer is also activated, which
will generate another event (deadline expiry). If that event
occurs before the completion of the task, then the obligation
in question is violated and this can be a sub-ideal or non-ideal
situation. There are several usages of this pattern in Figure 1.
For example FixProblem task is activated at the same time
as the corresponding timer (3Days), and the flows from that
timer and from the task are fed into an OR merging node, so
that whichever event occurs first it would continue onto the
subsequent flows via the merger node. We will use the name
of the event and the name of the timer to denote the resulting
complex event, in this case the event is FixProblem3Days .

B. Event-centric transformation
The example of Figure 1 is shown in terms of event patterns

as follows.
a) Supplier Side:: There are three event sub-patterns,

which describe independently triggered execution paths asso-
ciated with:

• the activity of waiting for Purchase Orders (and if re-
ceived, starting delivering service)

• Invoicing activities
• Reaction to the problems

These patterns are listed next.

π1 = eNewContract ;WaitPO7days;
((POrecieved ;DeliverService;mNotifyPurchaser)
∨ End)

π2 = NewMonth;CreateInvoice;
(mInvoice ∧ (CheckPayment7days;

([Paid]DeliverService ∨ [NotPaid];End)))
π3 = mProblemDetected ;QoSMonitor ;FixProblem3days;

([fixed]DeliverService ∨ [notFixed]End)

Notice that these patterns will need to be composed into one
high-level pattern that will represent execution path options for
the overall process. So, these three sub-patterns are then AND-
ed and NewMonth andmProblemDetected can then become part
of guards for the last two patterns.
Similar reasoning applies to the Purchaser Side, and the

three patterns there are:

π4 = eNewContract ;PresentPO ;mPO

π5 = mNotifyPurchaser ;UseService;
([problem]mProblemDetected ∧D1monthBeforeContractEnd);
([Renew]PresentPO ∨ [NoRenew]End)

π6 = mRecieveInvoice ;PayInvoice;UseService

C. ANDs and ORs
The event relationships from the BPMN example above

include several operators that were not included in the ex-
ecution path expressions derived from the normal form of
the contract expressed in FCL. These are the AND and
OR operators that can describe two separate branches in a
process, and Guards which can be likened to the states in
the FCL antecedents. The lack of such operators within the
expressions of behaviour execution paths results from the
limitations of current behaviour execution paths formalism
which is primarily influenced by the sequence relationship
between antecedent and conclusion in the FCL statements.
Although we do plan to extend this execution path for-

malism (for example to express Obligation on two events
in AND relationship) this limitation is not the problem for
this example because the Ideal semantics can incorporate
compliance checking for the AND and OR branches. It does
so by providing a union of execution paths from AND or OR
branches.
In case of OR branches an ideal situation for the whole

process is satisfied if any of the branches are ideal.
In case of AND branches, if all AND branches are ideal,

then the composite process is ideal. However, if any of AND
branches is non-ideal or sub-ideal so is the overall process.
This area needs further investigation.

D. BPMN Compliance with FCL
We are now ready to test whether the specifications of the

path obtained from the BPMN diagram comply with the FCL
representation of the contract according to the ideal semantics
presented in Section V-C.
Process π1 contains an OR-branch, thus it generates two

sequences

P1 = eNewContract ;WaitPO7days;POrecieved ;
DeliverService;mNotifyPurchaser

P2 = eNewContract ;WaitPO7days;End

Assuming that the event POrecieved corresponds to the event
PurchaseOrder , and event DeliverService to Deliver , then
the path P1 does not comply with rule r5.2 since it lacks
the timer 1day. Path P2 does not contain any subsequence
of the sequences given in Section V-C, and thus it is deemed

as irrelevant. We can argument in the same way (lack of timer)
to determine the non compliance of processes π4 and π5

Similarly to the previous case process π3 generates two
paths:

P3 = mProblemDetected ;QoSMonitor ;FixProblem3days;
[fixed]DeliverService

P4 = mProblemDetected ;QoSMonitor ;FixProblem3days;
[notFixed]DeliverService

Again assuming that the same ontology is used for event liter-
als in FCL and event patterns in BPMN, ¬QualityOfService
maps to mProblemDetected and Replace to FixProblem , then
P3 corresponds to a sub-deal situation (see sequence S4

in Section V-C) for rule r4.2, In this case Replace and
FixProblem have the same timer. On the other hand, P4 is
not-ideal since the process repairing the violation of the then
required event FixProblem3days is that the supplier has to
refund the customer and to pay her a penalty, and not the
termination of the contract.
Finally π2 and π5 are not relevant for the contract (i.e.,

they do not affect whether the whole processes complies or
not with the contract).

VII. CONCLUSIONS AND FUTURE WORK
In this paper we have embarked on a relatively unexplored

research theme related to compatibility checking of business
processes against business contracts. The value of this research
lies in the need to address a number of incompatibility
problems in the business world, resulting from varying busi-
ness environments, characterised by different business setups,
external constraints as well as future organisations trajectories.
One specific compatibility area that is addressed in this paper
is concerned with ensuring compliance between business pro-
cesses and business contracts. This is of relevance for many or-
ganisational environments of today in which business contracts
and business processes are designed and managed through
separate activities and by separate specialists. This can lead
to compliance problems that in turn may lead to the violation
of contract conditions with possibly costly consequences both
in financial and reputation terms.
Our approach to compliance checking involves the use

of a logic-based formalism for the expression of contracts
and their violations, coupled with a new semantics that we
have developed specifically for the purpose of compliance
checking. Both of these formalisms employ an event-based
way of expressing behaviour associated with contracts and
processes. The semantics consists of determining what are the
ideal, sub-ideal and non-ideal situations (or state of affairs)
when comparing business process execution paths and contract
conditions. We have tested our approach by assuming that
processes and contracts are developed by different experts and
we have found several compliance problems in the example
used, as reported.
This exercise has also identified several research issues that

we intend to address in future regarding compliance check-
ing. For example our current semantics supports relatively

simple normative expressions in which deontic constraints
are expressed in terms of single events. We plan to extend
it by considering complex event relationships instead, e.g.,
obligations involving two of more events related according
to various compositional operators. In addition, we plan to
investigate broader context for the Ideal semantics and cater
for a more complex compositional operators (than sequence
only) between events in behaviour execution paths, for exam-
ples as in [15]. Further, our example has pointed to a need
to provide a better handling of deadlines in FCL Obligation
modalities, because they are frequently used in the specifi-
cation of obligations. In particular we will try to incorporate
in FCL the approaches of [9] to represent temporal notions
and temporalised normative positions and of [4] to incorporate
obligation deadlines.
The example has also identified a need to establish a

common ontology for the events that are used in contract and
process specifications and we intend to investigate possible
solution approaches for this area.
Another topic is related to checking of a different form of

compatibility, namely the one which involves an additional
checking of possible future resource conflicts. For example,
are partners’s future commitments such that they may lead to
the violations of the contract in question.

ACKNOWLEGEMENTS
This work is partially supported by the Australia Research

Council under Discovery Project No. DP0558854.

REFERENCES
[1] J.F. Allen. Towards a general theory of action and time. Artif. Intell.,

23(2):123–154, 1984.
[2] J.F. Allen and G. Ferguson. Actions and events in interval temporal

logic. J. Log. Comput., 4(5):531–579, 1994.
[3] Business process execution language for web services. version 1.1, 5

May 2003.
[4] J. Broersen, F. Dignum, V. Dignum, and J.-J.Ch. Meyer. Designing a

deontic logic of deadlines. In DEON 2004, LNCS 3065, pp. 43–56.
Springer, 2004.

[5] G. Governatori. Representing business contracts in RuleML. Int. J. of
Cooperative Inf. Sys., 14(2-3):181–216, 2005.

[6] G. Governatori and D. P. Hoang. A semantic web based architecture for
e-contracts in defeasible logic. In RuleML, LNCS 3791, pp. 145–159.
Springer, 2005.

[7] G. Governatori and Z, Milosevic. Dealing with contract violations:
formalism and domain specific language. In EDOC 2005, pp. 46–57.
IEEE Press, 2005.

[8] G. Governatori and A. Rotolo. Logic of violations: A Gentzen system
for reasoning with contrary-to-duty obligations. Australasian Journal of
Logic, 4:193–215, 2006.

[9] G. Governatori, A. Rotolo, and G. Sartor. Temporalised normative
positions in defeasible logic. In ICAIL05, pp. 25–34. ACM Press, 2005.

[10] A.J.I. Jones and M. Sergot. A formal characterisation of institutionalised
power. Journal of IGPL, 3:427–443, 1996.

[11] S. Kanger. Law and logic. Theoria, 38:105–32, 1972.
[12] R. Lu, S. Sadiq, V. Padmanabhan, and G. Governatori. Using a tem-

poral constraint network for business process execution. In ADC2006,
CRPIT 49, pp. 157–166, ACS, 2006.

[13] Object Management Group. Business process modeling notation speci-
fication, 3 February 2006.

[14] R. Tagg, Z. Milosevic, S. Kulkarni, and S. Gibson. Supporting contract
execution through recommended workflows. In DEXA 2004, LNCS
3180, pp. 1–12. Springer, 2004.

[15] A.Z. Wyner. A functional program for agents, actions, and deontic
specifications. In Proceedings of DALT 2006, 2006.

http://eprint.uq.edu.au/archive/00002225/01/coala.pdf
http://eprint.uq.edu.au/archive/00002967/01/main.pdf
http://eprint.uq.edu.au/archive/00002967/01/main.pdf
http://eprint.uq.edu.au/archive/00002472/01/bcl.pdf
http://eprint.uq.edu.au/archive/00002472/01/bcl.pdf
http://eprint.uq.edu.au/archive/00002629/01/main.pdf
http://eprint.uq.edu.au/archive/00002629/01/main.pdf
http://eprint.uq.edu.au/archive/00002279/01/ic05.pdf
http://eprint.uq.edu.au/archive/00002279/01/ic05.pdf
http://eprint.uq.edu.au/archive/00003024/01/CRPITV49Lu.pdf
http://eprint.uq.edu.au/archive/00003024/01/CRPITV49Lu.pdf

