
Dealing with contract violations: formalism and domain specific language∗

Guido Governatori
School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, QLD 4072, Australia

email: guido@itee.uq.edu.au

Zoran Milosevic
CRC for Enterprise Distributed Systems Technology

Brisbane, QLD 4072, Australia
email: zoran@dstc.edu.au

Abstract
This paper presents a formal system for reasoning about
violations of obligations in contracts. The system is based
on the formalism for the representation of contrary-to-duty
obligations. These are the obligations that take place when
other obligations are violated as typically applied to penal-
ties in contracts. The paper shows how this formalism can
be mapped onto the key policy concepts of a contract speci-
fication language. This language, called Business Contract
Language (BCL) was previously developed to express con-
tract conditions of relevance for run time contract moni-
toring. The aim of this mapping is to establish a formal
underpinning for this key subset of BCL.

1. Introduction

The wide penetration of new broadband networks and
new computing technologies such as XML, Web Ser-
vices, Service Oriented Architectures and Even-Driven-
Architectures have enabled better and more versatile col-
laborative arrangement between enterprises. Examples
are virtual organisations, supply chains and extended en-
terprise.These cross-enterprise collaboration models bring
tighter degree of integration between partners’ business
processes including more transparency of their data and
processes than in the past. Such models also make it possi-
ble to accomplish faster reaction to business events of rel-
evance to organisations’ interactions. The business events,
can be either related to the occurrences associated with
the existing operational interactions or can be triggered by
need to add or modify the existing architecture in which
case they reflect an evolutionary character of occurrences.

These new collaboration models however give promi-

∗The first author was supported by the Australia Research Council un-
der Discovery Project No. DP0558854 on “A Formal Approach to Re-
source Allocation in Web Service Oriented Composition in Open Market-
places”.
The work reported in this paper has been funded in part by the Co-
operative Research Centre for Enterprise Distributed Systems Technology
(DSTC) through the Australian Federal Government’s CRC Programme
(Department of Education, Science, and Training).

nence to a number of problems some of which are new and
some which may have been partially addressed in the past.
One such problem is the analysis of business contracts as
a governance mechanism for cross-organisational collabo-
ration. At present, contracts are typically treated as legal
documents and there is a weak link between them and the
cross-organisational interactions that they govern. As a re-
sult, there is a renewed interest in contract architectures and
contract languages as the foundation for facilitating the au-
tomation of contract management activities.

This paper presents a formal system for describing con-
tracts in terms of deontic concepts such as obligations, per-
missions and prohibitions. Further, the logic supports rea-
soning about violations of obligations in contracts. The
system is based on the formalism for the representation of
contrary-to-duty obligations. These are the obligations that
take place when other obligations are violated as typically
applied to penalties in contracts. We then use this formal-
ism as a source of the mapping to the key policy concepts
of a contract specification language. This language, called
Business Contract Language (BCL) was previously devel-
oped to express contract conditions of relevance for run
time contract monitoring [15, 19]. BCL can be regarded
as a domain specific language, designed to support abstrac-
tions needed for the expressions of business contracts. It
was developed by considering many contracting scenarios
and taking into account the policy and community frame-
works in [16, 13]. The initial research prototype for the
BCL as part of Business Contract Architecture was devel-
oped and tested using several contract examples as pre-
sented in [15, 19, 18, 1]. The aim of this paper is to es-
tablish a formal underpinning for this key subset of BCL.

In the next section we introduce an example of a busi-
ness contract, which will be used to illustrate the concepts
discussed throughout the paper. In Section 3 we consider
contracts as legal instruments and express their semantics
using a logic-based formalism. The main idea behind this
formalism is to express contracts semantics in terms of de-
ontic modalities (or normative constructs) such as obliga-
tions, permissions and prohibitions. In addition, this for-
malism supports the expressions of and reasoning about
violations of such deontic modalities and the subsequent

c© 2005 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be
obtained from the IEEE.
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by
other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author’s copyright. In
most cases, these works may not be reposted without the explicit permission of the copyright holder.

actions that need to be taken to deal with violations. The
formalism is based on the work by Governatori and Rotolo
[7] who have proposed a formal system for reasoning about
the Contrary To Duty (CTD) obligations. This system al-
lows for checking of contract consistency and determining
whether there are missing or implied statements. We will
refer to this formalism as formal contract logic (FCL).

This formalism is then used as a basis for checking the
expressive power of relevant parts of Business Contract
Language (BCL) previously developed and presented in
[15, 19]. BCL is developed to support representation of key
modelling concepts needed to express contracts as a gover-
nance mechanism for cross-organisational interactions and
in particular to facilitate automated contract monitoring.
BCL is briefly described in section 4 and BCL fragments
for the example contract are presented in section 5.

We chose BCL as a mapping target for the FCL because
BCL language is perhaps the most comprehensive language
for the expression of contracts for the purpose of real-time
contract management applications. The language is based
on a precise policy framework proposed in [16], and further
refined and tailored for business contact management do-
main [12], as well as on a rich expressive power of an event
language for the specification of event-based behaviour as
part of policy expressions. It is worth noting that although
the language has its basis on these well-founded concepts,
it was also developed in incremental manner, as we were
considering increasingly complex contract scenarios and
case studies from the contract management domain.1 How-
ever, this style of BCL development has led to the need for
a more formal treatment of the language and this paper is a
step towards this direction.

In section 6 we establish a correspondence between the
semantics of FCL and the core concepts of BCL. Section 7
provides an overview of related work. The paper concludes
with listing the main points and by outlining our future re-
search directions in this area.

2. A Sample Contract

This paper is based on the analysis of the following sam-
ple contract, based on [18] and revised in [6].

CONTRACT OF SERVICES

This Deed of Agreement is entered into as of the Effective Data
identified below.

BETWEEN
ABC Company (To be known as the Purchaser)

AND
ISP Plus (To be known as the Supplier)

1Note that the language is XML-centric, exploiting relevant XML
standards, in particular Xpath, but these are not discussed in this paper.

WHEREAS (Purchaser) desires to enter into an agreement to pur-
chase from (Supplier) Application Server (To be known as (Ser-
vice) in this Agreement).

NOW IT IS HEREBY AGREED that (Supplier) and (Purchaser)
shall enter into an agreement subject to the following terms and
conditions:

1 Definitions and Interpretations
2.1 Price is a reference to the currency of the Australia unless

otherwise stated.
2.2 This agreement is governed by Australia law and the parties

hereby agree to submit to the jurisdiction of the Courts of
the Queensland with respect to this agreement.

2 Commencement and Completion
3.1 The commencement date is scheduled as January 30, 2004.
3.2 The completion date is scheduled as January 30, 2005.

3 Price Policy
3.1 A “Premium Customer” is a customer who has spent more

that $10000 in services. Premium Customers are entitled a
5% discount on new orders.

3.2 Services marked as “special order” are subject to a 5% sur-
charge. Premium customers are exempt from special order
surcharge.

3.3 The 5% discount for premium customers does not apply for
services in promotion.

4 Purchase Orders
4.1 The (Purchaser) shall follow the (Supplier) price lists at

http://supplier.com/catalog1.html.
4.2 The (Purchaser) shall present (Supplier) with a purchase or-

der for the provision of (Services) within 7 days of the com-
mencement date.

5 Service Delivery
5.1 The (Supplier) shall ensure that the (Services) are avail-

able to the (Purchaser) under Quality of Service Agreement
(http://supplier/qos1.htm). (Services) that do not conform
to the Quality of Service Agreement shall be replaced by
the (Supplier) within 3 days from the notification by the
(Purchaser), otherwise the (Supplier) shall refund the (Pur-
chaser) and pay the (Purchaser) a penalty of $1000.

5.2 The (Supplier) shall on receipt of a purchase order for (Ser-
vices) make them available within 1 days.

5.3 If for any reason the conditions stated in 4.1 or 4.2 are not
met, the (Purchaser) is entitled to charge the (Supplier) the
rate of $ 100 for each hour the (Services) are not delivered.

6 Payment
6.1 The payment terms shall be in full upon receipt of invoice.

Interest shall be charged at 5 % on accounts not paid within
7 days of the invoice date. The prices shall be as stated
in the sales order unless otherwise agreed in writing by the
(Supplier).

6.2 Payments are to be sent electronically, and are to be per-
formed under standards and guidelines outlined in PayPal.

7 Termination
7.1 The (Supplier) can terminate the contract after three delayed

payments.

In a nutshell, the items covered within this contract are:
(a) the roles of the parties; (b) the period of the contract
(the times at which the contract is in force); (c) the nature
of consideration (what is given or received), e.g., actions or
items; (d) the obligations and permissions associated with
each role, expressed in terms of criteria over the considera-
tions, e.g., quality, quantity, cost and time; (e) some depen-
dencies between policies, and (f) the domain of the contract
(which determines the rules under which the validity, cor-
rectness, and enforcement of the contract will operate).

3. Formal Representation of Contracts

Business contracts are mutual agreements between two
or more parties engaging in various types of economic ex-
changes and transactions. They are used to specify the obli-
gations, permissions and prohibitions that the signatories
should be hold responsible to and to state the actions or
penalties that may be taken in the case when any of the
stated agreements are not being met.

We will focus on the monitoring of contract execution
and performance: contract monitoring is a process whereby
activities of the parties listed in the contract are governed
legally, so that the correspondence of the activities listed in
the contract can be monitored and violations acted upon. In
order to monitor the execution and performance of a con-
tract we have to have a precise representation of the ‘con-
tent’ of the contract to perform the required actions at the
required time.

The clauses of a contract are usually expressed in a cod-
ified or specialised natural language, e.g., legal English. At
times this natural language is, by its own nature, imprecise
and ambiguous. However, if we want to monitor the exe-
cution and performance of a contract, ambiguities must be
avoided or at least the conflicts arising from them resolved.
In addition conditions influencing the expected behaviour
of the parties can be specified in different documents and
can be subject to the legislation currently in force. A further
issue is that often the clauses in a contract show some mu-
tual interdependencies and it might not be evident how to
disentangle such relationships. To implement an automated
monitoring system all the above issues must be addressed.

To address some of these issues we propose a formal
representation of contracts. A language for specifying con-
tracts needs to be formal, in the sense that its syntax and
its semantics should be precisely defined. This ensures that
the protocols and strategies can be interpreted unambigu-
ously (both by machines and human beings) and that they
are both predictable and explainable. In addition, a for-
mal foundation is a prerequisite for verification or valida-
tion purposes. One of the main benefits of this approach is
that we can use formal methods to reason with and about
the clauses of a contract. In particular we can

• analyse the expected behaviour of the signatories in a
precise way, and

• identify and make evident the mutual relationships
among various clauses in a contract.

Secondly, a language for contracts should be conceptual.
This, following the Conceptualization Principle of [8], ef-
fectively means that the language should allow their users
to focus only and exclusively on aspects related to the con-
tent of the contract, without having to deal with any aspects
related to their implementation. As stated in [8], examples
of conceptually irrelevant aspects are, e.g., aspects of (ex-
ternal or internal) data representation, physical data organ-
isation and access, as well as all aspects related to platform
heterogeneity (e.g., message-passing formats).

Every contract contains provisions about the obliga-
tions, permissions, entitlements and others mutual norma-
tive positions the signatories of the contract subscribe to.
Therefore a formal language intended to represent con-
tracts should provide notions closely related to the above
concepts. Since the seminal work by Lee [14] Deontic
Logic has been regarded as one on the most prominent
paradigms to formalise contracts.

3.1. Obligations, Violations and CTD

Deontic Logic extends classical logic with the modal
operators O, P and F . Thus, for example the interpreta-
tion of the formulas OA, PA and FA are, respectively, that
A is obligatory, A is permitted and A is forbidden. A full
characterisation of the modal operators is not crucial in this
paper. All we need is that the modal operators obey the
usual mutual relationships

OA≡ ¬P¬A ¬O¬A≡ PA O¬A≡ FA ¬PA≡ FA,
are closed under logical equivalence, i.e., if A ≡ B then
OA ≡ OB, and satisfy the axiom OA → PA (if A is oblig-
atory, then A is permitted) implying the internal coherency
of the obligations in a contracts: it is possible to execute
obligations without doing something that is forbidden.

The obligations in a contract, as well as the other norma-
tive positions that eventually appear in contracts, are spe-
cific to some of the signatories of the contract. To capture
this we will consider directed deontic operators [10]; i.e.,
the deontic operators will be labelled with the subject of
deontic modality. In this perspective the intuitive reading
of the expression OsA is that s has the obligation to do A,
or that A is obligatory for s.

Very often contracts make provisions about unfulfilled
clauses: those provisions describe what some of the sub-
jects of a contract have to do in case they breach the con-
tract (or part of it), and can vary from (pecuniary) penalties
to the termination of the contract itself. This type of con-
struction, i.e., obligations in force after some other obliga-
tions have been disattended, is know in the deontic litera-

ture as contrary-to-duty obligations (CTD) or reparational
obligations. These are in force only when normative viola-
tions occur and are meant to ‘repair’ violations of primary
obligations [2]. Thus a contrary-to-duty is a conditional
obligation arising in response to a violation, where a viola-
tion is signalled by an unfulfilled obligation.

Contrary-to-duties are one of the most debated fields of
deontic logic, and, at the same time, they are subject to
contrary-to-duty paradoxes. In response to the paradoxes
many systems often with different intuitions and motiva-
tions have been proposed. The question whether an ulti-
mate solution for all CTD paradoxes exists is still open. In
this paper we do not touch upon this issue and we focus on
a simple logic of violation that seems to avoid most of the
well-known paradoxes and offers a simple computational
model to compute chains of violations. The ability do deal
with violations or potential violations and the reparational
obligation generated from the them is one the essential re-
quirements for reasoning about and monitoring the imple-
mentation and performance of business contracts.

The idea behind the logic of violation [7] is that the
meaning of a clause of a contract (or, in general a norm
in a normative system) cannot be taken in isolation: it de-
pends on the context where the clause is embedded in (the
contract). For example a violation cannot exist without an
obligation to be violated. The second aspect we have to
consider is that a contract is a finite set of explicitly given
clauses and, very often, some other clauses are implicit (or
can be derived) from the already given clauses. The abil-
ity to extract all the implicit clauses from a contract is of
paramount importance for the monitoring of it; otherwise
some aspects of the contract could be missing from its im-
plementation. Accordingly a logic of violation to be useful
for the monitoring and analysis of a contract should provide
facilities to

1) relate interdependent clauses of a contract and
2) extract or generate all the clauses (implicit or ex-

plicit) of a contract.
As we have just discussed a violation cannot exist without
an obligation to be violated. Thus we have a sequential
order among an obligation, its violation and eventually an
obligation generated in response to the violation and so on.
To capture this intuition we introduce the non-boolean con-
nective⊗, whose interpretation is such that OA⊗OB is read
as “OB is the reparation of the violation of OA” (we will
refer to formulas built using ⊗ as ⊗-expressions); in other
words the interpretation of OA⊗OB, is that A is obligatory,
but if the obligation OA is not fulfilled (i.e., when ¬A is
the case, and consequently we have a violation of the obli-
gation OA), then the obligation OB is in force. The above
interpretation shows that violations are special kinds of ex-
ceptions [7], and several authors have used exceptions to
raise conditions to repair a violation in the context of con-

tract monitoring [19, 9].
In the next section we lay down the foundations for our

Formal Contract Logic (FCL).

3.2. Reasoning about Violations

We now introduce the logic (FCL) we will use to reason
about contracts. The language of FCL consists of two set
of atomic symbols: a numerable set of propositional let-
ters p,q,r, . . . , intended to represent the state variables of a
contract and a numerable set of event symbols α,β ,γ, . . .
corresponding to the relevant events in a contract. Formu-
las of the logic are constructed using the deontic operators
O (for obligation), P (for permission), negation ¬ and the
non-boolean connective⊗ (for the CTD operator). The for-
mulas of FCL will be constructed in two steps according to
the following formation rules:

• every propositional letter is a literal;
• every event symbol is a literal;
• the negation of a literal is a literal;
• if X is a deontic operator and l is a literal then Xl and
¬Xl are modal literals.

After we have defined the notion of literal and modal literal
we can use the following set of formation rules to introduce
⊗-expressions, i.e., the formulas used to encode chains of
obligations and violations.

• every modal literal is an ⊗-expression;
• if Ol1, . . . ,Oln are modal literals and ln+1 is a literal,

then Ol1⊗ . . .⊗Oln and Ol1⊗ . . .⊗Oln⊗Pln+1 are
⊗-expressions.

Each condition or policy of a contract is represented by a
rule in FCL, where a rule is an expression

r : A1, . . . ,An %C
where r is the name/id of the policy, A1, . . . ,An, the an-
tecedent of the rule, is the set of the premises of the rule
(alternatively it can be understood as the conjunction of all
the literals in it) and C is the conclusion of the rule . Each Ai
is either a literal or a modal literal and C is an⊗-expression.

The meaning of a rule is that the normative position
(obligation, permission, prohibition) represented by the
conclusion of the rule is in force when all the premises of
the rule hold.

Thus, for example, the second part of clause 5.1 of the
contract (“the supplier shall refund the purchaser and pay
a penalty of $1000 in case she does not replace within 3
days a service that do not conform with the published stan-
dards”) can be represented as

r : ¬p,¬α % OSupplierβ
where p is propositional letter meaning that “a service has
been provided according to the published standards”, α
is the event symbol corresponding to the event “replace-
ment occurred within 3 days”, and β is the event symbol

corresponding to the event “refund the customer and pay
her the penalty”. The policy is activated, i.e., the supplier
is obliged to refund the customer and pay her a penalty
of $1000, when the condition ¬p is true (i.e., we have a
faulty service), and the event “replacement occurred within
3 days” lapsed, i.e., its negation occurred.

The connective ⊗ permits combining primary and CTD
obligations into unique regulations. The operator⊗ is such
that ¬¬A ≡ A for any formula A and enjoys the properties
of associativity A⊗ (B⊗C)≡ (A⊗B)⊗C, duplication and
contraction on the right, A⊗B⊗A≡ A⊗B. The right-hand
side of the last equivalence states that B is the reparation
of the violation of the obligation A. That is, B is in force
when ¬A is the case. For the left-had side we have that, as
before, a violation of A, i.e., ¬A, generates a reparational
obligation B, and then the violation of B can be repaired by
A. However, this is not possible since we already have ¬A.

The formation rules for ⊗-expressions allows a permis-
sion to occur only at the end of such expression. This is due
to fact that a permission can be used a reparation of a viola-
tion, but it is not possible to have violation of a permission,
thus it makes no sense to have reparations to permission.
Sometimes contracts contain other mutual normative posi-
tions such as delegations, empowerment, rights and so. Of-
ten these notions can be effectively represented in terms of
complex combinations of directed obligations and permis-
sions [5]. Hence violations to such complex notions result
in violations to the obligations describing such notions.

One of the features of the logic of violation is to take
two rules, or clauses in a contract, and merge them into a
new clause. Let examine some common patterns for this
kind of construction (the general rule for merging clauses
is given in (1).

Let us consider a policy like (in what follows Γ and ∆
are sets of premises)

Γ % OsA.

Given an obligation like this, if we have that
∆,¬A % Os′C,

then the latter must be a good candidate as reparational
obligation of the former. This idea is formalised is as fol-
lows:

Γ % OsA ∆,¬A % Os′C
Γ,∆ % OsA⊗Os′C

This reads as if there exists a conditional obligation whose
antecedent is the negation of the propositional content of
a different norm, then the latter is a reparational obliga-
tion of the former. In this way, the CTD obligation can
be forced to be an explicit reparational obligation with re-
spect to the violation of its primary counterpart. Accord-
ingly, it seems reasonable to discard both premises when
they are subsumed by the conclusion. Their reciprocal in-
terplay makes them two related norms so that they cannot

be viewed anymore as independent obligations. Notice that
the subjects and beneficiaries of the primary obligation and
its reparation can be different, even if very often in con-
tracts they are the same.

Suppose the contract includes the rules
r : Invoice % OPurchaserPayWithin7Days

r′ : ¬PayWithin7Days % OPurchaserPayWithInterest.
From these we obtain

r′′ : Invoice % OPurchaserPayWithin7Days⊗
OPurchaserPayWithInterest.

The schema in (1) can also generate chains of CTDs in or-
der to deal iteratively with violations of reparational obliga-
tions. The following case is just an example of this process.

Γ % OsA⊗OsB ¬A,¬B % OsC
Γ % OsA⊗OsB⊗OsC

For example we can consider the situation described by
Clause 5.1 of the contract. Given the rules

r : Invoice % OSupplierQualityOfService⊗
OSupplierReplace3days

and
r′ :¬QualityOfService,

¬Replace3days % OSupplierRefund&Penalty
we derive the new rule

r′′ : Invoice % OSupplierQualityOfService⊗
OSupplierReplace3days⊗
OSupplierRefund&Penalty.

The above patterns are just special instances of the general
mechanism described by the following inference mecha-
nism

r : Γ % OsA⊗ (
⊗n

i=1 OsBi)⊗OsC r′ : ∆,¬B1, . . . ,¬Bn % XsD
r′′ : Γ,∆ % OsA⊗ (

⊗n
i=1 OsBi)⊗XsD

(1)
where X denotes an obligation or a permission. In this last
case, we will impose that D is an atom. Since the minor
premise states that XsD is a reparation for OsBn, i.e. the
last literal in the sequence

⊗n
i=1 OsBi, we can attach XsD

to such sequence.
Given the structure of the inference mechanism it is pos-

sible to combine rules in slightly different ways, and in
some cases the meaning of the rules resulting from such
operations is already covered by other rules in the con-
tract. In other cases the rules resulting from the merging
operation are generalisations of the rules used to produce
them, consequently, the original rules are no longer needed
in the contract. Thus some clauses can be removed from
the contract without changing the meaning of it. To deal
with this issue we introduce the notion of subsumption be-
tween rules. Intuitively a rule subsumes a second rule when
the behaviour of the second rule is implied by the first rule.

We first introduce the idea with the help of some exam-
ple and then we show how to give a precise formal defini-
tion of the notion of subsumption appropriate for FCL.

Let us consider the rules
r : Invoice % OSupplierQualityOfService⊗

OSupplierReplace3days⊗
OSupplierRefund&Penalty,

r′ : Invoice % OSupplierQualityOfService⊗
OSupplierReplace3days.

The first rule, r, subsumes the second r′. Both rules
state that after the seller has sent an invoice she has
the obligation to provide goods according to the pub-
lished standards, and if she fails to do so –i.e., if
she violates such an obligation–, then the violation
of QualityOfService can be repaired by replacing the
faulty goods within three days (OSupplierReplace3days).
In other words OSupplierReplace3days is a secondary
obligation arising from the violation of the primary
obligation OSupplierQualityOfService. In addition r
prescribes that the violation of the secondary obli-
gation OSupplierReplace3days can be repaired by
OSupplierRefund&Penalty, i.e., the seller has to refund
the buyer and in addition she has to pay a penalty.

As we discussed in the previous paragraphs the condi-
tions of a contract cannot be taken in isolation in so far
as they exist in a contract. Consequently the whole con-
tract determines the meaning of each single clause in it. In
agreement with this holistic view of norms we have that
the normative content of r′ is included in that of r. Ac-
cordingly r′ does not add any new piece of information to
the contract, it is redundant and can be dispensed from the
explicit formulation of the contract.

Another common case is exemplified by the rules:

r : Invoice % OPurchaserPayWithin7Days⊗
OPurchaserPayWithInterest,

r′ : Invoice,¬PayWithin7Days%OPurchaserPayWithInterest.
The first rule says that after the seller sends the in-
voice the buyer has one week to pay it, otherwise the
buyer has to pay the principal plus the interest. Thus
we have the primary obligation OPurchaserPayWithin7Days,
whose violation is repaired by the secondary obligation
OPurchaserPayWithInterest, while, according to the sec-
ond rule, given the same set of circumstances Invoice
and ¬PayWithin7Days we have the primary obligation
OPurchaserPayWithInterest. However, the primary obliga-
tion of r′ obtains when we have a violation of the primary
obligation of r. Thus the condition of applicability of the
second rule includes that of the first rule, and then they
have the same normative content. Therefore the first rule is
more general than the second and we can discard r′ from
the contract.

The intuitions we have just exemplified can be fully cap-
tured by the following definition.

Definition 1 Let r1 : Γ % A⊗B⊗C and r2 : ∆⇒ D be two
rules, where A =

⊗m
i=1 Ai, B =

⊗n
i=1 Bi and C =

⊗p
i=1 Ci.

Then r1 subsumes r2 iff
1) Γ = ∆ and D = A; or
2) Γ∪{¬A1, . . . ,¬Am} = ∆ and D = B; or
3) Γ∪{¬B1, . . . ,¬Bn} = ∆ and D = A⊗

⊗k≤p
i=0 Ci.

The idea behind this definition is that the normative content
of r2 is fully included in r1. Thus r2 does not add anything
new to the system and it can be safely discarded. In the ex-
amples above, we can drop rule r, whose normative content
is included in r′′.

We are now ready to outline how the apply the logical
machinery we have developed to deal with business con-
tracts before we transform the logical representation in a
language apt to monitor the execution of a contract. This
consists of the following two steps:

1) Starting from a formal representation of the explicit
clause of a contract we generate all the all implicit
conditions that can be derived from the contract by
applying the merging mechanism of FCL.

2) We can clean the resulting representation of the con-
tract by throwing away all redundant rules according
to the notion of subsumption.

4. Business Contract Language (BCL) in brief

The purpose of Business Contract Language (BCL) is
to specify business contracts in a way suitable to enable
monitoring of contract execution in an event-based man-
ner. Contract execution period starts after contract terms
are agreed and contract is signed by signatories to the con-
tract and finishes at the specified point in time stated in the
contract or as a result of various other termination condi-
tions such as contract violation. Real-time monitoring of
activities of the roles involved in business processes gov-
erned by contracts is a key aspect of enterprise contract
management. The aim is to check whether these activities
signify fulfilment policies agreed in the contract or their
existing or possibly forthcoming violations. A special case
of policy violation refers to situations in which a required
activity of a role stated in contract (directly or indirectly)
has not been carried out. This means that the monitoring
also needs to detect cases of the non-execution of activities
emanating from contracts.

BCL incorporates relevant concepts from the Reference
Model for Open Distributed Processing standards [12] and
Enterprise Language standard [13] and is developed by
considering a number of scenarios from business contract
management domain. BCL also introduces the concept of

event pattern as a specific style of expressing state of affairs
of relevance for contract monitoring.

Event is the central concept in BCL and BCL can be
regarded as an event-driven language. A single event can
be used to signify:

• an action of a signatory to the contract, or any other
party mentioned in the contract

• a temporal occurrence such as a deadline,
• change of state associated with a contract variable,
• contract violation and many other conditions associ-

ated with contract execution.
In addition, multiple events can be combined and used

to describe the execution of more complex activities. We
introduced the concept of event pattern to specify relation-
ships between events that are of relevance to business con-
tracts. An event pattern is a means for describing a state
of affairs. A state of affairs can range from the elemen-
tary, such as the occurrence of a particular action performed
by a party or the passing of a deadline, to the more com-
plex, such as “more than three sets of down time in any a
one week period” and “one of the contract conditions has
been violated”. Examples of event relationships are logical
relationships between events (AND, OR, NOT), temporal
relationships (e.g., before and after), temporal constraints
on event patterns (e.g., absolute and relative deadlines and
sliding time windows [15]), event causality, and some spe-
cial kinds of singleton event pattern (e.g., contract violation
and state change events). We note that the event pattern
concept has many similarities to the work by Luckham on
complex event processing [17].

The main purpose of event patterns in BCL is to en-
able checking policies related to a contract. Policies define
behavioural constraints for the roles that carry out activi-
ties in contract and these constraints are described in terms
of event patterns. Policy checking consists of identifying
event patterns in activities of parties filling a role and estab-
lishing whether they satisfy the policies. The policies take
a form of modal constraints such as obligations, permis-
sions and prohibitions. These modal constraints in a con-
tract specification reflect their English-language meaning:
obligations identify activities that must occur, permissions
identify activities that may occur, and prohibitions identify
activities that must not occur. In all cases, these constraints
can be conditional, for example, if payment is not made
then the supplier is permitted to charge interest on the out-
standing amount. We note that there may be other business
rules that state various constraints on contract and do not
have explicitly modal character, such as start and end date
of contract and these are easier to incorporate as part of
contract monitoring. Considering policies, they represent
a key constituent of a business contract specifications. A
contract is described as a set of policies that apply to the
behaviour of signatories and various other roles involved in

business processes governed by contracts.
As a result of policy checking procedure a policy viola-

tion may be detected. In BCL, we represent the occurrence
of such violation using a special kind of event type, namely
PolicyViolation event type. If occurred, this event can then
be treated as any other event and can be used as part of
other event patterns for various purposes. One specific pur-
pose is to use this event to link the violating policy with
another policy that can take effect in response to this viola-
tion, referred to as contrary-to-duty or reparation policy be-
fore. This is the mechanism used in BCL for the expression
of (possibly a chain of) reparation policies. In this case, a
BCL guard can be used as a precondition for the activation
of this reparation policy. After this policy was activated the
same monitoring machinery can apply to check the fulfil-
ment of this new policy. There is no limit of how many
policies can be chained using this approach.

Contract related events can often change the state of var-
ious variables associated with the contract. To this end,
BCL defines the concept of a state for that contract vari-
able and the value of this state can be either determined
explicitly in response to an event, or on request when the
state value is needed. Typically, a contract has many state
variables changing in response to the corresponding events.

BCL introduces the concept of a community, which es-
tablishes linkage of contract with organisational structures.
Community is an overarching concept for the specification
of objects that collaborate to achieve a certain goal. These
objects fill the roles of a community. Thus, a community
is defined as a set of roles, policies, states and related event
patterns that apply to the community. We note that commu-
nity is a general concept for describing collaboration and
can be used to model structure within one organisation or
cross-organisational structures. Business contracts is a spe-
cific kind of community.

5. BCL Fragments

We illustrate the use of BCL through the example of
contract service from section II with fragments of language
expressions introduced progressively and discussed along-
side these fragments. The BCL fragments are contract-
oriented constraints over the purchasing process.

Role A BCL Role is used as a label for a party whose be-
haviour is constrained by policies stated in a contract. BCL
roles are names, with the expected behaviour of parties fill-
ing roles defined in the containing Policy specification. Pol-
icy specification in turn includes EventPattern definitions
associated with a specific Role name. The syntax for role
identification is as follows:
Role: Purchaser

Note that BCL roles have cardinality, that is, more than one
party in a contract can fulfil a role.

Event Pattern As discussed previously in section 4,
event patterns are a key component in checking policies
related to a contract. Policy checking consists of identify-
ing event patterns in activities of parties filling a role and
ensuring that they satisfy the policies. Events are matched
with an event pattern by event type.

EventType Id=PurchaseOrder
Defined by XMLSchema

for UBL Order

This specifies that a purchase order event is signified by the
existence of an XML document using the UBL Order XML
schema.

Note that event matching can exploit some further in-
formation such as event parameters from the event content,
e.g. the amount specified in the Purchase Order document
included as an event’s payload.

Events in BCL can involve multiple EventRoles. The
EventRole concept is a generic labelling mechanism for
identifying roles in event execution that can be played by
participants. An event with multiple roles is specified as
follows:

Event typeId=PurchaseOrder
EventRole name=Buyer
EventRole name=Seller

The BCL event roles are to be distinguished from contract
roles: by using generic event role names, the same event
definition can be re-used in many contexts. The BCL event
roles can then be bound to specific contract roles. In our
example this can be achieved as follows:

Event typeId=PurchaseOrder
EventRole name=GenericBuyer

RoleType name=Purchaser
EventRole name=GenericSeller

RoleType name=Supplier

This applies to all purchase orders in the community tem-
plate, meaning that the event pattern will only be matched
if the Purchaser fills the GenericBuyer event role and the
Supplier fills the GenericSeller role.

State BCL State construct is used to define data values
shared by the participants in the Community . This is used
to maintain running totals, counters and other state required
to evaluate policy. Such state defines a set of update actions
and is introduced with the following syntax:

State: GoodsPurchasedAmount
CalculationExpression
UpdateOn: Payment
UpdateSpecification:

return this + Payment.Amount

This defines the amount spent by the Purchaser , which is
updated whenever a payment is made. State changes are
bound to event patterns and are deterministic, that is, the
value of a state can only be modified through the match-
ing of visible event patterns. While such state is relatively
easy to maintain consistently in an environment with cen-
tralised control, maintaining state in a distributed context is
considerably more difficult, as discussed in more detail in
[1].

Policy A Policy is used to specify business-level con-
straints in a BCL Community [15]. It is explicitly asso-
ciated with a Role and has a Modality indicating whether
it is an obligation, permission or prohibition, described in
detail below.

The behaviour associated with a policy is a conditional
expression over events expressed as an event pattern. This
expression states a normative constraint that applies to the
role in question, for example, the obligation of the supplier
to make sure the goods are available within one day of re-
ceipt of a purchase order issued by the purchaser. Thus the
event pattern specifies all the events that constitute a nor-
mative constraint, including those that effectively trigger
this policy, and that may originate from an external source,
such as other party or timeout event. Although the event
pattern is sufficient to express behavioural constraint in the
policy, it may be useful for a policy specifier, to extract
triggering information from the behavioural condition ex-
pression, i.e., from the event pattern. We refer to that part
of behaviour expression as trigger. So, in our example, the
triggering event is PurchaseOrder . In some cases, policy
can become active as soon as the system that implements
the policy is activated. In this case trigger corresponds to
the SystemStart .

Obligation A BCL Policy can have an Obligation modal-
ity, indicating that the event pattern defined in the policy
must occur. An obligation is specified as follows:
Policy: MakeGoodsAvailable

Role: Supplier
Modality: Obligation
Trigger: PurchaseOrder
Behaviour:
GoodsAvailable.date before (PurchaseOrder.date + 1)

The policy specifies the goods availability behaviour condi-
tion (clause 5.2 in the example contract) as an event pattern.
In this case the event pattern is satisfied if the GoodsAvail-
able event generated by the Supplier (or their agent) is at
most one day after the PurchasOrder event was received.
This matching is done by checking the date parameters of
both events. The satisfaction of event patterns means that
this obligation policy is satisfied. Notice that this policy
specifies obligation on the supplier and it is silent about

policies that may apply to other roles. For example, the
policy does not say anything about the origins of Purchase-
Order event and policies that might apply to the party that
generates this event. Thus, the triggering condition for this
policy is occurrence of PurchaseOrder event.

Note that GoodsAvailable event signifies availability of
goods which may be manually or automatically entered
into the system and PurchaseOrder event signifies for ex-
ample that a message carrying PurchaseOrder document
has arrived. These events can be generated using any deliv-
ery mechanism such as email, SMS message etc.

The definition of monitoring for this obligation is made
easier by the explicit specification of a time period in the
policy. If the obligation is not satisfied in the the time pe-
riod, then a violation event will be generated.

Permission A BCL Policy can have a Permission modal-
ity, indicating that the behaviour defined in the policy is
allowed to occur. For example:

Policy: ChargingPolicy
Role: Supplier
Modality: Permission
Trigger: SystemStart
Behaviour: InvoiceSend after GoodsAvailable

The policy specifies that the Supplier is permitted to send
an invoice after it made goods available. Note that the ex-
ample contract does not explicitly state this policy, but we
imply it from the natural language interpretation of the con-
tract.

Prohibition A BCL Policy can have a Prohibition modal-
ity, indicating that the behaviour defined in the policy must
not occur, for example:

Policy: PurchaserSpecialOrderCondition
Role: Purchaser
Modality: Prohibition
Trigger: PurchaseOrder
Behaviour:

PurchaseOrder.PurchaserAge less LegalAge
This policy specifies that only Purchasers below legal age
are prohibited of purchasing “special orders”.

Violations BCL supports expression of guarded condi-
tions that can be applied to the BCL event pattern and a
number of language elements that contain event patterns
such as policies, state updates, and notification genera-
tion. In general the BCL guard specifies precondition for
the evaluation of the corresponding element. For example,
guard can be used to specify when a policy is to be applied
such as in the example below:

Policy: MaintenanceSupplierIT
Role: Supplier
Modality: Prohibition

Trigger: SystemStart
Guard: on weekday
Behaviour: ITMaintenance

Note that in this case the guard effectively ‘triggers’ the
policy as this policy is in force at all times during this sys-
tem life-time (unless it is subsequently changed).

This states that the policy will be active for the monitor-
ing purpose only on weekdays (i.e., when its guard condi-
tion is true).

One specific use of guards can be to specify conditions
for the activation of reparation or contrary-to-duty policies
as discussed in previous section. For example, the follow-
ing policy expresses the condition in the first sentence of
Clause 5.1 of the example contract. Note that for simplicity
we do not elaborate on the exact meaning of the QualityOf-
ServiceAgreement condition below.
Policy: QualityOfServicePolicy

Role: Supplier
Modality: Obligation
Trigger: SystemStart
Behaviour:
QualityOfServiceAgreement at http://suplier/qos1.htm

When a service does not satisfy this condition a violation
event (QualityOfServicePolicyViolated) will be generated
indicating that this obligation is violated. This condition
can then be used in an expression of a guard for a policy
that applies under these circumstances, namely:
Policy: Replace3daysPolicy
Role: Supplier
Modality: Obligation
Guard: HasOcurred QualityOfServicePolicyViolated
Behaviour: Replace.now + 3 days

This new policy will be activated for the monitoring when
QualityOfServicePolicyViolated guard was true, i.e., when
the violation event of QualityOfServicePolicy was detected.
For the detection of this event we use HasOcurred event
pattern expression where QualityOfServicePolicyViolated
event is an input parameter and the result is Boolean. From
that point in time the Replace3daysPolicy will need to be
monitored to establish whether Supplier has fulfilled its
contrary-to-duty obligation.

6. FCL and BCL

In previous sections we have shown how BCL can be
used to describe basic deontic modalities of obligations,
permissions and prohibitions. We have also shown how it
can be used to describe violation conditions and reparation
policies. Here we give a mapping from FCL to BCL.

The ⊗ operator introduced in Section 3.1 provides a
formal foundation for expressing primary obligations and
violation conditions. This violation condition in turn can
express subsequent policies that come in effect when this

condition is true. Further, the logic supports recursive ex-
pression of such violation conditions.

In terms of BCL, we have shown in the previous BCL
fragments that a combination of BCL guards and a special
kind of event, namely PolicyViolation event, can be used to
implement the semantics of the FCL connective operator.
Here the occurrence of PolicyViolation can be used to set to
true the guard condition that applies to the reparation pol-
icy. Similarly as in FCL, it is possible to specify a chain
of reparation policies. This capability illustrate further ex-
pressive power of BCL.

6.1. Mapping Contract to BCL

In this section we present a mapping from the FCL to
BCL. First we will extend the language of FCL with a set
of rule labels. Those labels will be used to uniquely identify
the clauses of a contract.

The mapping of a formal contract C from FCL to BCL
is determined by a function map that parses each rule ri in
C and return an expression in BCL, according to the format
of the elements in ri.

Given a rule
ri : Ai

1, . . .A
i
n % Bi

where, ri is the id of the rule, Ai
js are either modal literals or

literals and Bi is an ⊗-expression, we use Ant(r) to denote
the set of literal in the antecedent of the rule and Con(r)
to denote the consequent of the rule. Thus given the above
rule ri, we have

Ant(ri) = {Ai
1, . . . ,A

i
n}, Con(ri) = Bi

A modal literal carries three types of information: the
modality (obligation, permission, prohibition), the subject
or bearer of the modality, and the expected behaviour. For
example the modal literal ObuyerPayWithin7days indicates
that the buyer, has the obligation to pay for a service within
seven days. Here the modality is O (an obligation), the
buyer is the subject of the obligation, and PayWithin7days
is the expected behaviour of the subject of the obligation.
To map a modal literal into BCL, we have to define func-
tions to extract these pieces of information. To define this
mapping we adopt the fact that there are fixed but arbi-
trary bijections from the set of events symbols and proposi-
tional letters in FCL to events and states in BCL, and from
subjects of modalities in FCL to roles in the community
of BCL corresponding to the contract C . Thus we have
that given a modal literal XsA, role(XsA) returns the role
in BCL corresponding to the subject s, behaviour(XsA) re-
turns the event or state corresponding to the literal A, and
modality(XsA) returns Obligation if X = O, Permission if
X = P and Prohibition if X = F .

The antecedent of a rule is a set of literals, and in FCL
a literal can be either an event symbol or a propositional

letter. In FCL both propositional letters and event sym-
bols have the same logical status. However, this distinc-
tion is important for contract monitoring (see the discus-
sion in the section where we present the elements of BCL).
Therefore when we map them from FCL to BCL we must
be able to distinguish these and to use in the appropriate
ways. To this end we introduce two functions, parseEvents
and parseStates that take as input a set S of literals and re-
turn the set of events corresponding to the event symbols
in S and the states corresponding to the propositional let-
ters in S. In case S does not contain any event symbols
parseEvents returns the special event SystemStart .

The mapping from FCL to BCL is done by a function
map that takes as input a rule in FCL and it returns a policy
in BCL. In case a rule specify a CTD (i.e., the consequent
of the rule is an ⊗-expression) then map beside returning
the policy corresponding to the primary obligation will call
an auxiliary function vmap (for violation map).

The function map(ri) is thus defined as:
If Bi = MsCi for some Ci (i.e., Bi is a modal literal) then

map(ri) generates the following policy:

Policy: id=ri
Role: role(Con(ri))
Modality: modality(Con(ri))

Trigger: parseEvents(Ant(ri))
Guard: parseState(Ant(ri))
Behaviour: behaviour(Con(ri))

otherwise, when there a reparation obligation is involved,
namely when Bi = OrCi⊗Di (i.e., Bi is an ⊗-expression),
map(ri) generates the following BCL policies:

Policy: id=ri
Role: role(Con(ri))
Modality: Obligation

Trigger: parseEvents(Ant(ri))
Guard: parseStates(Ant(ri))
Behaviour: behaviour(Con(ri))

vmap(Di,ri,0)

Here, the second function vmap, is referred to violations
and, in a similar way we have vmap(Bi,ri,n), where Bi is
a deontic formula, ri is a rule, and n is an integer, depends
on the format of its first parameter. If Bi = MrCi then, the
expression corresponding to vmap(Bi,ri,n) is

Policy: id=ri.n
Role: role(Con(ri))
Modality: modality(Con(ri))

Trigger: SystemStart
Guard: HasOccured riViolated
Behaviour: behaviour(Con(ri))

otherwise (i.e., Bi = OrCi⊗Di) it produces

Policy: id=ri.n
Role: role(Con(ri))
Modality: Obligation

Trigger: SystemStart
Guard: HasOccured riViolated
Behaviour: behaviour(Con(ri))

vmap(Di,ri,n+1)

We illustrate the mapping with the help of some examples.
Let us consider the rule corresponding to Clause 7.1 of the
contract (“The supplier can terminate the contract after 3
delayed payments”).

7.1 : 2Delays,¬PayWithin7Days % PSupplierTerminate

Where 2Delays is a propositional letter and
PayWithin7days is an event symbol.

The element of the rule are:

Ant(7.1) = {2Delays,¬PayWithin7Days}
Con(7.1) = PSupplierTerminate

Here Con(7.1) is a modal literal thus we can use the first
part of the the definition of map. Moreover

role(PSupplierTerminate) = Supplier
modality(PSupplierTerminate) = Permission

behaviour(PSupplierTerminate) = Terminate.

For the antecedent of the rule we have

parseEvents(Ant(7.1)) = ¬PayWithin7Days
parseStates(Ant(7.1)) = 2Delays.

Therefore the mapping of rule 7.1 gives us the following
policy in BCL

Policy: id=7.1
Role: Supplier
Modality: Permission

Trigger: not PayWithin7Days
Guard: 2Delays
Behaviour: Terminate

In the second example we a case where we have to use
vmap. Consider the rule corresponding to the first part of
Clause 6.1 of the contract.

6.1 : Invoice % OPurchaserPayWithin7Days⊗
OPurchaserPayWithInterest.

The elements of the rule are

Ant(6.1) = {Invoice}
Con(6.1) = OPurchaserPayWithin7Days⊗

OPurchaserPayWithInterest

Since Con(6.1) is an ⊗-expression we have to use the sec-
ond part of the definition of map, from which we obtain

Policy: id=6.1
Role: Purchaser
Modality: Obligation

Trigger: Invoice
Behaviour: PayWithin7Days

vmap(OPurchaserPayWithInterest,6.1,0)

At this stage we have to evaluate
vmap(OPurchaserPayWithInterest,6.1,0).

Since the first argument of the vmap is a modal literal we
can use the first part of the definition. This yields the fol-
lowing BCL policy

Policy: id=6.1.0
Role: Purchaser
Modality: Obligation

Trigger: SystemStart
Guard: HasOccured 6.1 Violated
Behaviour: PayWithInterest

7. Related Work

Other contract languages have been proposed recently,
most notably the Contract Expression Language [4], Web
Services Level Agreements [11] and ecXML [3]. BCL has
a number of similarities with these. For example, regarding
the the event-oriented style of the specification, it has sim-
ilarities with ecXML and regarding its deontic foundation,
it has similarities with ecXML, CEL and WSLA. However,
BCL covers broader aspects, including the organisational
context for the definition of policies, behaviour and struc-
ture. In terms of the logical approach of the FCL presented
in this paper, this work has similarity with the early work
of Lee [14], who proposed the use of deontic formalism
for the specification of contracts. However, to the best of
our knowledge our work is unique in that we apply recently
developed logic of violation to specify aspects of contracts
that deal with violations. [9] considers the monitoring of
contracts and includes the treatment of violations, but it
does not use deontic modalities. Thus there is not a full cor-
respondence between the proposed logic and the domain to
be modelled by it, thus the treatment of violations must be
hard-coded in the definitions of the rules and policies in-
stead of in the logic to reason about them.

8. Discussion and Future Work

In this paper we have presented a formal system for the
representation of contracts including the representation and
reasoning about violations of obligations in contracts. The
main aim of the paper is to use this system to provide logic-
based formal foundation for the aspects of a domain spe-
cific language, BCL, developed to support business con-
tract specification for contract monitoring purposes. Our

investigation of current features of BCL has found high a
level of expressiveness of the BCL for this purpose. In par-
ticular we have found that the BCL expression of obliga-
tions, permissions and prohibitions is sufficient to express
most of these deontic concepts. In addition, we have found
that BCL provides a good solution for the expression of
violations and the corresponding reparation or contrary-
to-duty obligations. This solution is based on the use of
the concept of guard as a predicate for determining when
the dependent, e.g., reparation policies should be activated.
This predicate in turn is expressed as a special kind of event
pattern expression that allows searching for a specific kind
of event type, the policy violation event type. Note that
in our implementation of a contract management system
this event type is generated by a business policy monitor-
ing component at a point in time when the policy’s en-
closing event pattern has been found to be violated. One
can perhaps attribute this expressiveness of BCL to the in-
cremental development of this language. Coupled with a
precise enterprise modelling framework as a starting point,
in this development we have considered increasingly com-
plex contract scenarios collected from various interaction
patterns such as e-procurement and industry domains such
as finance and insurance. This in turn suggested a need
for a well decoupled language to reflect separation of main
concerns such as separate structuring into community, pol-
icy, state and event pattern sub-models and augmented with
the use of events as central point for integrating these sub-
models. This design solution enables further evolution of
the language as more scenarios are gathered.

We have also identified several aspects of BCL that need
further consideration and which we plan to study in fu-
ture. One particular issue is whether, and if so how, the
current BCL expression of policy should be structured to
better support policy specifiers in distinguishing the trig-
gering conditions from the policy behaviour conditions. In
other words, we need to investigate whether current com-
pact policy expression of BCL, which consists of both the
triggering events for the activation of policy and the events
that directly refer to the actions of role to which the policy
applies, needs to be separated in the respective components.

Another issue that needs further investigation is whether
there needs to be a better separation between subject and
target roles in a policy expression. BCL’s construct of event
role parameters in the event specification provides a good
starting point, but this needs more detailed exploration.

We also plan to study how policy conflicts and priori-
ties could be supported in both the FCL and BCL. We be-
lieve that the approach of [6] where BCL is combined with
an efficient non-monotonic formalism (Defeasible Logic)
specifically designed to reason in presence of conflict via
priorities can prove beneficial for the monitoring of con-
tract and can lead to further development of BCL. This

work also shows how RuleML, a general markup language
for rules intended as tool to exchange rules over different
systems and architecture, can be extended to represent con-
tracts, and the logic based on the combination of BCL and
Defeasible Logic can be used to reason about contracts.

References
[1] A. Berry and Z. Milosevic. Extending choreography with

contract constraints. Int. J. of Cooperative Inf. Syst., 14,
2005.

[2] J. Carmo and A.J.I. Jones. Deontic logic and contrary to
duties. In D.M. Gabbay and F. Guenther, editors, Handbook
of Philosophical Logic., volume 8: 265–343. Kluwer, 2002.

[3] A.D.H. Farrell, M.J. Sergot, M. Sallé, and C. Bartolini. Per-
formance monitoring of service-level agreements for utility
computing using the event calculus. In 1st IEEE WEC04:
17–24, 2004.

[4] Content Reference Forum. Contract Expression Lan-
guage (CEL) –An UN/CEFACT BCF compliant technology,
21/12/2004.

[5] J. Gelati, G. Governatori, A. Rotolo, and G. Sartor. Nor-
mative autonomy and normative co-ordination: Declarative
power, representation, and mandate. AI& Law, 12(1-2):53–
81, 2004.

[6] G. Governatori. Representing business contracts in
RuleML. Int. J. of Cooperative Inf. Syst., 14, 181–216, 2005.

[7] G. Governatori and A. Rotolo. A Gentzen system for reason-
ing with contrary-to-duty obligations. A preliminary study.
In ∆eon’02: 97–116, 2002.

[8] J.J. van Griethuysen, editor. Concepts and Terminology for
the Conceptual Schema and the Information Base. Publ. nr.
ISO/TC97/SC5/WG3-N695, ANSI, 1982.

[9] B.N. Grosof and T.C. Poon. SweetDeal: representing agent
contracts with exceptions using XML rules, ontologies, and
process descriptions. In 12th WWW: 340–349. ACM, 2003.

[10] H. Herrestad and C. Krogh. Obligations directed from bear-
ers to counterparts. In 5th ICAIL: 210–218. ACM, 1995.

[11] IBM. Web service level agreements, Accessed 31/06/2004.
[12] ISO/IEC 10746-1 10756-2 10746-3 10746-4. Basic refer-

ence model for open distributed processing.
[13] ISO/IEC IS-15415. Open distributed processing-enterprise

language, 2002.
[14] R.M. Lee. A logic model for electronic contracting. Deci-

sion Support Systems, 4:27–44, 1988.
[15] P. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulkarni,

and S. Neal. A unified behavioural model and a contract
for extended enterprise. Data & Knowledge Engineering,
51:5–29, 2004.

[16] P. Linington, Z. Milosevic, and K. Raymond. Policies in
communities: Extending the odp enterprise viewpoint. In
EDOC98, 1998.

[17] D. Luckham. The Power of Events. Addison-Wesley, 2002.
[18] Z. Milosevic and G. Dromey. On expressing and monitoring

behaviour in contracts. In EDOC2002, 2002.
[19] Z. Milosevic, S. Gibson, P. Linington, J. Cole, and S. Kulka-

rni. On design and implementation of a contract monitoring
facility. In 1st IEEE WEC04: 62–70. 2004.

http://eprint.uq.edu.au/archive/00002279/01/ic05.pdf
http://eprint.uq.edu.au/archive/00002279/01/ic05.pdf
http://eprint.uq.edu.au/archive/00002279/01/ic05.pdf
http://eprint.uq.edu.au/archive/00002225/01/coala.pdf
http://eprint.uq.edu.au/archive/00002225/01/coala.pdf
http://eprint.uq.edu.au/archive/00001893/01/deon02.pdf
http://eprint.uq.edu.au/archive/00001893/01/deon02.pdf

