

Elemental and Pegamento: The Final Cut
Applying the MDA Pattern

K. Duddy, M. Lawley and Z. Milosevic.

Distributed Systems Technology Centre,
University of Queensland,

Brisbane, QLD 4072, Australia.
{dud, lawley, zoran}@dstc.edu.au

Abstract
We provide an investigation of the applicability of the
Model Driven Architecture TM to the development of a
technical architecture in a specific domain, viz: contract
monitoring. We define MDA in terms of a single basic
pattern, which is then composed in several ways to
represent the behaviour of a large range of MDA tools.

The paper introduces both the work of the Elemental
project to provide the domain example, and the Pegamento
project to explain the metamodels and tools in the MDA
framework which might be applied to the domain.

Elemental has developed an architecture and a language
for supporting Enterprise Contract Management (ECM) as
part of an extended enterprise model. Pegamento has
specified and built MDA prototype tools using several
modelling languages, meta-languages and platforms. As the
work of both these projects reaches maturity, ”the Final
Cut”1 is our proposed application of this toolset to
facilitate building a model-based implementation of the
relevant parts of Elemental’s ECM system.

We discover several generic MDA pattern matches in this
case study, and several specific to the ECM. We also
identify and discuss pattern mismatches.

Keywords: Model Driven Architecture, Contract
Architecture, Patterns

1 This paper is dedicated to several young researchers
involved in these two projects since 1999, in particular
James Cole, Anna Gerber, Simon Gibson, Sachin Kulkarni
and Jim Steel.

1. Introduction

This paper is an attempt to investigate the extent to
which the OMG’s Model Driven ArchitectureTM [1][2][3]
can be applied to the development of a technical
architecture in a specific domain, viz: automated contract
monitoring. This technical architecture belongs to a class of
architectural designs that could be characterised by the
existence of a generic enterprise architecture pattern that
can be tailored to a specific deployment environment
through model-based configuration of the enterprise
pattern.

This paper has been in the making over the last year or
so, as the culmination of many years of collaborative efforts
between two DSTC projects, namely Elemental and
Pegamento. While both projects were established in 1999
and worked jointly until 2001 on a response to the OMG’s
“UML profile for EDOC” RFP [10], our subsequent work
has diverged. Pegamento has continued its focus on
establishing modelling and model transformation as the
driver for middleware application development in the OMG
– now branded as MDATM . Elemental has focused on inter-
organisational issues such as the specification of enterprise
policies [8], communities and business contracts
[18][25][28], and have contributed to the OASIS legalXML
e-contracts TC [33]. The key outcomes of the Elemental
ECM are the Business Contract Architecture (BCA)
(primarily based on [21], and the Business Contract
Language (BCL) [29].

In developing the BCA and the language for expressing
its main concepts: the Business Contract Language (BCL),
the Elemental project initially adopted an XP-based
approach to develop a proof-of-concept demonstrator and to

 1

experiment with emerging Web Services technologies (in
2001-2002) [9]. This has allowed us to gain initial
experience in building a cross-organisational contract
management system. The latest versions of the BCL
abstract syntax are expressed as metamodels, with a view to
automatically generating a significant part of the engine
which executes expressions in the language. This paper
investigates the applicability of the Pegamento toolset to
this task.

We begin by restating MDA in terms of a single basic
pattern that is then composed in several ways to represent
the behaviour of a large range of MDA approaches and
tools. Some discussion of the relationships between models
and platforms arises here. Then we describe the BCA and
BCL. The subsequent section presents the MDA toolset
used and developed by the Pegamento project. This is
followed by our pattern-matching analysis of how the MDA
and Pegamento models and tools could be applied to
building an engine for executing contract monitoring as
specified by the BCL. The paper concludes with a
summary.

2. The MDA Pattern

Most of the literature on MDA describes the mapping of
Platform Independent Models (PIMs) to Platform Specific
Models (PSMs) as the most general case of the MDA
approach, and then goes on to specialise this “pattern” to
include mappings of other kinds, such as translations
between models at the same level of abstraction, mappings
with multiple input or output models, or an additional level
of mappings where the resulting PSM plays the role of a
PIM in a second mapping step.

We generalise from the descriptions of an MDA pattern
given in [1], [2] and [3] to a single simple case of two
metamodels with a directional transformation definition
between them . The astute reader will notice that
we use the words “metamodel” and “transformation” where
others use “model” and “mapping”. This is not because we
disagree with the other authors about what actually takes
place in an MDA tool, but because in their attempts to
make MDA accessible to wide audience, they find it useful
to blur the distinction between models and metamodels, at
least initially, to allow them to phrase things in terms of a
single application of the MDA pattern.

Figure 1

In our view, and we believe the authors mentioned
concur with us, any model-based development which does
operations on a single, unique instance of a model–usually
a design of a specific software system–is using a pre-MDA
approach. MDA is characterised by the ability to define or
implement a mechanism that relates all valid models
conforming to some metamodel, into a class of valid

models conforming to another metamodel. Validity of
models may be defined in various ways, but is usually
based on conformance to some set of constraints or
preconditions.

Figure 1: The Base MDA Pattern

<metamodel-1> <metamodel-2>

[platform-1] [platform-2]

<transform>

is_PAM_of is_PAM_of

targetsource
<metamodel-1> <metamodel-2>

[platform-1] [platform-2]

<transform>

is_PAM_of is_PAM_of

targetsource

3. What is a PAM?

Much discussion has been had in OMG and in other fora
on the topics “What is a model?”, “What is a platform?”
and “What is a platform model?”. We do not intend to
attempt a full exposition of these topics here. However, it is
possible to state that it is widely understood that the
“PIM/PSM” pairing requires a statement of what platform
these models are relative to. Conversely, given a platform,
and some PSM language that allows models for that
platform to be created, we can state that the PSM
metamodel is a model of some aspect of that platform: a
Platform Aspect Model (PAM).

As an example let us consider a mapping from classes in
UML 1.4 to interfaces in CORBA 3.0. Let us instantiate the
pattern in Figure 1. (A complete description of the pattern
language follows in Section 3.1). First, we provide “UML
1.4 Metamodel” as the argument to fill parameter
<metamodel-1>. Then we fill <metamodel-2> with
“CORBA 3.0 IDL Metamodel”, and [platform-2] with
“CORBA 3.0”. Finally, <transform> is replaced by
“UML1.4 to CORBA 3.0 IDL”. We ignore the optional
parameter [platform-1] because characterising the kind of
platforms for which UML designs are suitable would
require “system” or something equally meaningless.

The invariant relationships “source” and “target” have
an obvious meaning in relation to the directional
transformation “UML1.4 to CORBA 3.0 IDL”. And the
relationship “is_PAM_of” explains that the metamodel for
CORBA 3.0 IDL is also a model of only the interface
definition aspect of the CORBA 3.0 platform, and ignores

2

the protocol and language mapping aspects of CORBA
(among others).

<O-O-Programming-
Language-Metamodel>

[O-O-Libraries-and-tools]

<refactor>

source

target

is_PAM_of

<O-O-Programming-
Language-Metamodel>

[O-O-Libraries-and-tools]

<refactor>

source

target

is_PAM_of

3.1 The Pattern Language

The pattern abstraction we have chosen is informally
based on the work in [11]. In the notation, boxes of any
shape represent (parameterised) named things and lines
represent named relationships between them. Italicised text
names are invariant relationships in the pattern. We use the
UML style of writing the relationship name at the end far
from the subject and close to the object of the relationship.
Angle brackets denote a mandatory parameter, and square
brackets an optional parameter.

In addition to the diagrams, the pattern language
supports:

Java-Metamodel

JDK-1.2

Encapsulate-properties

is_PAM_of

source

target

Java-Metamodel

JDK-1.2

Encapsulate-properties

is_PAM_of

source

target

Parameter Renaming: oldname/newname

Parameter Instantiation: <param>/actual

Parameter Unification: param1 = param2

Optional Parameter Mandating: <param>

Optional Parameter Deleting: X[param]

Renaming and Mandating [name]/<manname>

Figure 2: The PIM-PSM MDA Pattern

Figure 2

For example, the following instantiation of the Base MDA
pattern in shows the PIM-PSM based pattern
given in most MDA literature ().

Figure 1

metamodel-1/PIM
metamoldel-2/PSM
X[platform-1]
platform-2/platform

Another example restatement is refactoring (): Figure 3

Figure 3: The Refactoring Pattern

Patterns may, of course, also be instantiated, and we use the
following instantiation as an example of a specific type of
refactoring, the encapsulation of public properties by
accessor methods (4):

<refactor>/Encapsulate-properties
<O-O-Programming-Language-Metamodel>/Java-

Metamodel
<O-O-Libraries-and-tools>/JDK-1.2

<PIM-Language> <PSM-Language>

<platform>

<mapping>

is_PAM_of

targetsource
<PIM-Language> <PSM-Language>

<platform>

<mapping>

is_PAM_of

targetsource

Figure 4: The Encapsulate Properties Pattern

3.2 Pattern Composition

The composition of two basic MDA patterns can also
show the recursive nature of the approach. The Enterprise
Collaboration Architecture (ECA) metamodel [12] is the
key model in the so-called UML Profile for EDOC standard
[31]. It models component encapsulation and interaction via
synchronous operation invocation, choreographed
asynchronous messaging, publish/subscribe, and process
orchestration. In other words, it is an abstraction of the
facilities of popular application server platforms such as
J2EE, CORBA Components and Services, and .NET. Its
sister standard, the Enterprise Application Integration (EAI)

metamodel-1 = metamodel-2
platform-1 = platform-2
metamoldel-1/O-O-Programming-Language-MM
platform-1/O-O-Libraries-and-tools
transform/refactor

 3

metamodel allows specification of lower-level messaging
interactions to be executed in a Message-Oriented
Middleware (MOM) platform such as Tibco, Websphere-
MQ, and JMS. This is how the PIM-PSM MDA pattern can
be applied to generation of a MOM application from an
ECA model.

Note that when we use an intermediate model, the
platform associated with it via is_PAM_of is more general
than the platform associated with the final PSM. In this case
EAI is a PAM of all MOM application servers, while the
final PSM is a PAM of a specific MOM application server.

Note that when we use an intermediate model, the
platform associated with it via is_PAM_of is more general
than the platform associated with the final PSM. In this case
EAI is a PAM of all MOM application servers, while the
final PSM is a PAM of a specific MOM application server.

First we restate (and partially instantiate, delete and
mandate) the PIM-PSM MDA pattern in terms of the ECA
metamodel resulting in Fi :

ECA-Metamodel EAI-Metamodel

MOM-App-Servers

ECA-to-EAI

is_PAM_of

targetsource <MOM-App-Server-
PAM>

<MOM-App-
Server>

<EAI-to-MOM>

is_PAM_of

targetsource
ECA-Metamodel EAI-Metamodel

MOM-App-Servers

ECA-to-EAI

is_PAM_of

targetsource <MOM-App-Server-
PAM>

<MOM-App-
Server>

<EAI-to-MOM>

is_PAM_of

targetsourcegure 5

Figure 5: The ECA to App Server MDA Pattern Figure 5: The ECA to App Server MDA Pattern

<PIM-Language>/ECA-Metamodel
transform/ECA-to-App-Server
PSM-Language/App-Server-PAM
[platform]/<App-Server>

 Figure 7: The ECA via EAI to MOM App Server
MDA Pattern

Figure 7: The ECA via EAI to MOM App Server
MDA Pattern Then we restate the PIM-PSM MDA pattern in terms of

mapping EAI to some MOM Application Server platform
resulting in : n : Figure 6

Figure 6: The EAI to MOM App Server Pattern

Figure 6

Figure 6: The EAI to MOM App Server Pattern

<PIM-Language>/EAI-Metamodel <PIM-Language>/EAI-Metamodel 4. Elemental Contract Management System 4. Elemental Contract Management System transform/EAI-to-MOM transform/EAI-to-MOM
PSM-Language/MOM-App-Server-PAM

 platform/<MOM-App-Server>
PSM-Language/MOM-App-Server-PAM

 platform/<MOM-App-Server> The Elemental project has focused on developing
enterprise modelling concepts for intra- and inter-
organisational structures and behaviour (below).
An initial and joint activity with the Pegamento project was
work on the UML profile for EDOC, mostly covering intra-
enterprise aspects (1999-2001). Our subsequent work
(2001-2003) addressed inter-organisational problems. As
part of this we developed an architecture for supporting
business contracts, primarily based on the Business
Contract Architecture initially proposed in [21], and a
Business Contract Language (BCL) for the specification of
contract conditions for monitoring purposes.

The Elemental project has focused on developing
enterprise modelling concepts for intra- and inter-
organisational structures and behaviour (below).
An initial and joint activity with the Pegamento project was
work on the UML profile for EDOC, mostly covering intra-
enterprise aspects (1999-2001). Our subsequent work
(2001-2003) addressed inter-organisational problems. As
part of this we developed an architecture for supporting
business contracts, primarily based on the Business
Contract Architecture initially proposed in [21], and a
Business Contract Language (BCL) for the specification of
contract conditions for monitoring purposes.

Figure 8: Figure 8:

Figure 8: The Elemental Vision in 1999

Figure 8

ECA-Metamodel <App-Server-PAM>

<App-Server>

<ECA-to-App-
Server>

is_PAM_of

targetsource
ECA-Metamodel <App-Server-PAM>

<App-Server>

<ECA-to-App-
Server>

is_PAM_of

targetsource

E-contracts

Legal and domain polices

Valu
e A

dded
 C

hain

Organisation B

Internal polices

Organisation A

Role

Business
Process

Step
Organisational
rules & policies
(unstructured)

E-contracts

Legal and domain polices

Valu
e A

dded
 C

hain

Organisation B

Internal polices

Organisation A

Role

Business
Process

Step
Organisational
rules & policies
(unstructured)

EAI-Metamodel
<MOM-App-Server-

PAM>

<MOM-App-
Server>

<EAI-to-MOM>

is_PAM_of

targetsource
EAI-Metamodel

<MOM-App-Server-
PAM>

<MOM-App-
Server>

<EAI-to-MOM>

is_PAM_of

targetsource

 Now we can compose these patterns with a couple of
parameter equalities, and instantiate the <ECA-to-
AppServer> transformation resulting in Figure 6. Note that
unification of a formal parameter with an instantiated actual
parameter results in the actual parameter being used in the
composed pattern.

 Now we can compose these patterns with a couple of
parameter equalities, and instantiate the <ECA-to-
AppServer> transformation resulting in Figure 6. Note that
unification of a formal parameter with an instantiated actual
parameter results in the actual parameter being used in the
composed pattern.

4.1 Business Contract Architecture

The Business Contract Architecture supports the full
contract life cycle and consists of the following components
(see , [25]). <App-Server-PAM> = EAI-Metamodel <App-Server-PAM> = EAI-Metamodel

<App-Server> = MOM-App-Servers <App-Server> = MOM-App-Servers
 <ECA-to-App-Server>/ECA-to-EAI <ECA-to-App-Server>/ECA-to-EAI

 4

A Community Manager, which allows the contract
administrator to make dynamic updates of roles, policies
and other community model elements; The BCA is easily
configurable so that other components can be added as
necessary.

• A Contract Repository, for storing standard contract
templates, and optionally standard contract clauses as
building blocks for drafting new contract templates;

• A Notary that stores evidence of agreed contracts (and
their relationships) created during the negotiation
process – to prevent any of the parties repudiating it;

4.2 Business Contract Language
• An Interceptor, providing non-intrusive interception of

business messages exchanged between trading partners
for further contract monitoring;

This section describes Business Contract Language
(BCL) for the specification of contract monitoring
conditions. BCL can be used for the tailoring of BCA for
the specific contract management environment.

• A Business Activity Monitoring (BAM) component
that processes events received from the interceptors,
manages internal states related to the contract and
provides access to various enterprise data sources
needed by the Contract Monitor for policy evaluation;

4.2.1. Main characteristics
Domain Specific – BCL is a domain-specific language

that introduces modelling abstractions which correspond
directly to terms used in the contract management domain.
It allows the unstructured text of contracts, stated in natural
language to be re-expressed in a structured form, amenable
to automated processing (Figure 10).

• A Contract Monitor that evaluates contract policies to
determine whether the signatories have fulfilled their
obligations or whether there are violations to the
contract; this component uses the BAM component for
event pattern and state processing; it then sends
appropriate messages to the Notifier component; Declarative – BCL is primarily a declarative language

whose notation allows the expression of contract domain
concepts in a manner close to the way domain experts
think. This allows the user to explicitly express their
intention, the what of the problem, while the BAM engine
takes care of the how

• A Notifier, for sending human readable notification
messages to contract managers.

Monitor

Interceptor

BAM Engine

Community
Manager

Administrator

Purchasing

ERP System

Notary

Enforcer

Notifier

Contract
Manager

Enterprise
Data

Templates
Repository

Drafter

BCL Definitions

Data Access
Message

Legend

MonitorMonitor

InterceptorInterceptor

BAM EngineBAM Engine

Community
Manager

Community
Manager

Administrator

Purchasing

ERP System

NotaryNotary

EnforcerEnforcer

NotifierNotifier

Contract
Manager

Enterprise
Data

Enterprise
Data

Templates
Repository
Templates
Repository

Drafter

BCL DefinitionsBCL Definitions

Data Access
Message

Legend

Event-driven – most of the execution in BCA is
triggered by events. For example, states are updated in
response to events, policy checking is triggered by events,
and generation of internal events is driven by other events.

Model-based - this principle was adopted to ensure rapid
and predictable development and deployment for specific
contracting environments. This entails the use of:

• models to describe rules, structures and constraints
of a specific contracting environment; the models
expressed in BCL are used to parameterise the
contract framework described below

• templates to represent patterns of structure and
behaviour.

Figure 9: Business Contract Architecture Figure 10 shows how the BCL configuration models
parameterise the framework, producing a specific contract
management system. The components above constitute the core functionality

needed for most contract management processes.
Additional capabilities may be required for specific contract
management systems. Examples of other possible
components are:

4.2.2. BCL modelling concepts
BCL language concepts can be grouped into three

categories:
• A Contract Enforcer, for implementing corrective

measures if some violation has been detected;
1. Community and Policies - these BCL concepts are

introduced to define organizational, basic behavioural, and
modal constraints associated with contracts. They directly
map onto the terms expressed in natural language statement
of contracts.

• Contract Mediator and Arbitrator that can be used for
discretionary contract enforcement;

 5

Organizational constraints can be expressed using a
community model [25] that specifies the roles involved in a
contract and their relationships. The roles can represent
organizations participating in an overarching community, or
they can be within organizations. A community template
and associated instantiation rules specify conditions for the
creation of a community. This is mirrored by the notion of a
contract template as a basis for the creation of the
corresponding contract instances.

• event patterns – for detecting specific contract-related
occurrences, either as a single event or as multiple
events related to each other;

• internal states and their changes in response to the
events;

The purpose of event and state related concepts is to
support real-time evaluation of the execution of basic
behaviour and policies as stated in the contract with the aim
of detecting contract violations or contract fulfilments.

Basic behavioural interactions between roles in a
contract express the ordering of actions or steps in a
business process carried out by the signatories to a contract.
In BCL, most basic behaviour constraints are expressed
using event patterns.

BCL provides a rich set of options for expressing
relationships between events, however their full description
is beyond the scope of this paper. Representative examples
of such expressions are [29]:
• Sequence of events - the event pattern is satisfied when

all the events have occurred in the order specified in
the sequence;

Similarly, policies apply to the roles involved. Most are
modal constraints such as obligations, rights, permissions,
prohibitions, and authorizations. Policy conditions are also
generally expressed in terms of event patterns. • Disjunction of events - the event pattern is satisfied

when any of the events have occurred;
• Conjunction of Events - this pattern is satisfied when

2.
build
contr
• e

h
o

BCA/BCL
Framework

BCL
Configuration

Models

ECM
System

all the events have occurred;
• Quorum – this pattern is satisfied when a specified

number from the set of all events have occurred;
• Event Causality - the event pattern is satisfied when the

currently matched event has as its causal parent some
previously recognised event.

 The event pattern mechanism in BCL has many
similarities to the specification of complex event
processing, as described in [19].

BAM
Distributed

Engine

Action

Timeout

External
Event

Internal
Event

Enterprise
Data

BCL
Event

BCL
Definitions

Middleware

BCA
Engine

event deadline
action process

obligation

permission

prohibition

violation

state

Policies

Basic
Behaviour

Contract text
in

Natural language

Contract in BCL

BAM
Distributed

Engine

Action

Timeout

External
Event

Internal
Event

Enterprise
Data

Enterprise
Data

BCL
Event

BCL
Definitions

Middleware

BCA
Engine

event deadline
action process

obligation

permission

prohibition

violation

state

Policies

Basic
Behaviour

Contract text
in

Natural language

Contract in BCL

Figure 10: Model based solution

 Events and States – these BCL concepts are the
ing blocks used to describe community models and
act monitoring conditions. They include:
vent types – to be created when certain conditions
ave been matched, e.g. creation of contract violation
r contract fulfilment events.

Figure 11: Elemental reality in 2004:
BCL Models and BCA Engine

6

3. General language concepts - while the Communities
and Policies, and Events and States aspects of BCL are used
to express key concepts of the contracting domain we
needed additional language constructs similar to typical
programming languages.

5.2 Human Usable Textual Notation (HUTN)

The HUTN (pronounced hootin’) was a DSTC initiative
in the OMG to allow a human-friendly grammar (compared
to the XML syntax), and parsers and pretty printers, to be
generated from any metamodel. These are used for the
creation and browsing of instance data conforming to that
metamodel.

4.3 Executing BCL

The BCL definitions for specific contract models will
closely follow the expression of contract conditions stated
in natural language contract text (see Fi).

The HUTN format is structurally related to XMI, but has
a concise Java-like syntax [6].

gure 11

Figure 11

5.3 Anti-Yacc The semantic model for the execution of these behaviour
constraints is realised as part of the Business Activity
Monitoring (BAM) component, which can be distributed, if
necessary.

Although generating standard grammars is useful for
new MOF-based languages, many metamodels used in
MDA software development represent languages which
already have grammars defined: CORBA IDL, Java, XML,
C# etc. For these languages we must be able to output
models as text that can be parsed by compilers and other
tools.

Once the BCL descriptions are submitted to the BAM
engine it will respond to events as they occur. As
shows, there are different types of events, such as external
events resulting from the actions of people or systems,
temporal events such as timeouts or events generated
internally by the BAM engine. Often, as part of a condition
evaluation, the BAM engine needs to access data from
various enterprise repositories.

Anti-Yacc [5] is essentially a pretty-printer for MOF
models that uses EBNF grammars with embedded
navigation through the MOF metamodel representing the
language. It is an essential component for integration
between modelling- and text-based software engineering
tools. It enables us to use MOF models to represent
everything in our software environment – including code.

This monitoring design is quite generic and the BAM
engine can be used to monitor execution of any business
activity, whether directly related to a legally binding
contract, or as part of internal business processes.

5.4 EDOC/ECA Metamodel
5. The MDA tools developed and used by

Pegamento In March 1999 the UML Profile for Enterprise
Distributed Object Computing (EDOC) RFP called for a
modelling abstraction of all the concepts embodied by
modern application server platforms: encapsulated
components whose threading, transactional and persistence
properties were managed by the platform, choreographies
of these components, publish/ subscribe and other kinds of
messaging, business process definitions. The stated
intention was that the models created in such a language
could be automatically mapped to several application server
platforms, and that this should be demonstrated in
responses to the RFP.

The approach to software engineering of model mapping
and code generation from models has been articulated by
Czarnecki [17] among others before the coining of MDA as
a term/brand. The DSTC Pegamento project proposed such
an approach at the beginning of 1999, captured graphically
in . Figure 12

5.1 MOF

The initial MDA-like approach was influenced by our
involvement in the MOF standard [16] of OMG, which we
quickly began using as the basis for language design for
type management, for object-oriented databases, and for
software design in cases where UML had known problems
(for example software component and workflow design).
Our prototype MOF repository tools were used to bootstrap
the engineering for the standards-compliant dMOF product
[32].

5.4.1. Model Apocalypse
In late years of last century UML ran aground upon a

paradigm shift in software development. Objects were out,
components were in; methods were out, loosely coordinated
asynchronous messaging was in; sequences of invocations
were out, business process coordination was in. In the
modelling of structure UML had no good way of
representing components of the kind that COM, CORBA
and, to a lesser extent, EJB were implementing in their

 7

The adopted submission to the EDOC RFP actually
consisted of six metamodels and UML profiles. The
Enterprise Collaboration Architecture (ECA) is the key
metamodel (also expressed as UML profile).

platforms. Even the name “Component” in the UML
metamodel was used to define physical configuration.

In short, UML was not prepared for the advent of MDA,
because the metamodel, the extension mechanisms, and the
graphical tools all assumed that a human was driving the
development process. This meant that well-formedness
wasn’t important – the human who drew the picture knew
what the diagram meant, and she could derive the right
component interface or coordination description for the
platform. She could even write plugins to the tools that
made this semi-automatic.

NetBeansEclipse

Rational Rose
Visio

MOF
XMI

ECA
Argo UMLEAI

NetBeansEclipse

Rational Rose
Visio

MOF
XMI

ECA
Argo UMLEAI
EnterpriseEnterprise
Legend:
dMOF

HUTN Anti-Yacc

Tarzan Jane

Transformation Tool
Representation Tool

UML Tool

Enterprise App Model
Open Source IDE

MOF Model or Tool
Pegamento Model

or Tool

dMOF

HUTN Anti-Yacc

Tarzan Jane

Transformation Tool
Representation Tool

UML Tool

Enterprise App Model
Open Source IDE

MOF Model or Tool
Pegamento Model

or Tool

Model

Middleware
Abstraction

Existing
Middleware
Services

M
ap

pi
ng

 T
oo

l

Model

Middleware
Abstraction

Existing
Middleware
Services

M
ap

pi
ng

 T
oo

l

Figure 13: Pegamento reality in 2004

5.5 EAI Metamodel Figure 12: The Pegamento vision in 1999
Simultaneously with the EDOC RFP, submissions were

sought in OMG for modelling of messaging-based
enterprise application integration solutions. The metamodel
subtypes and extends the FCM model from EDOC, and
defines message typing, and various approaches to the
transmission, reception, interception, queuing, aggregation,
filtering, routing and transformation of messages in an
application integration scenario. Complex message
manipulation structures can be composed by the modeller
from simpler operators defined in the metamodel.

5.4.2. Business Object Facility (BOF)
Leading up the issuance of the EDOC RFP, the OMG

had taken the rare step of blocking the adoption of a
specification known as the BOF. This was a language,
expressed as a layer above CORBA, which allowed the
capture of recursively structured “components” which
represented business concepts.

5.4.3. A New Metamodel (and a Graphical Approximation)
 It soon became obvious that the semantics of UML were

impossible to reuse for the specification of EDOC without
breaking all the principles of object-orientation. Therefore a
new metamodel was defined which gave the correct
semantics. However, the submitters found that the
Collaboration metamodel of UML was very permissively
interconnected, which allowed recursive composition and
component port structure to be simulated. The ability to
attach state machines to any UML model element made it
possible to define protocols for these ports. In short, it was
possible to reuse the structure of UML, while ignoring
much of its semantics, thereby facilitating the use of UML
graphical tools.

5.6 Tarzan

Tarzan is the working name for a transformation engine
which implements the transformation language specified in
the DSTC revised submission to the OMG’s MOF 2.0 QVT
RFP.

The Pegamento team has prototyped three generations of
transformation engines for MOF models. The first of these
approaches was known as generator-generators (gen-gens
for short). Let us chose a simple case where a metamodel,
MM1, had a transformation description relating it to
another metamodel, MM2. The description of the

 8

transformation was read by the gen-gen, which generated a
specific model generator for MM2 models, which needed
an instance of an MM1 model as input. The gen-gen was
coded in Java, accessed the CORBA-based dMOF product,
and generated a Java tree-walker.

The next approach we attempted swung the pendulum
too far in the other direction on the compiler/interpreter
axis: we used F-Logic to code transformations directly as
predicates representing the transformation, and exported the
metamodels and the source model instances as fact-bases,
from which the transformations could deduce the target
models [7].

Tarzan is the next generation engine which implements
the same QVT semantics as the F-Logic-based engine,
with a few refinements, as reflected in our first revised
QVT submission. It is implemented in Java using Eclipse to
access EMF models and metamodels using their generated
APIs (these models can be imported from MOF tools as
XMI with XSLT applied [15]). It implements pattern
matching by expression solving with backtracking. Its
inputs are a set of source models and a transformation
description, and it outputs are a set of target models.

Object creation is done using object proxies with identity
which aggregate the target side property and type changes
implied by all of the rules related to an object. At the end of
the execution of transformation, real objects are created
based on the proxies, and returned to the invoker of the
transformation.

5.7 JANE

The ability to easily input and edit models in a graphical
tool environment has largely driven the use of UML
profiles for models that are not directly UML-based. We
are now extending the HUTN approach to the generation of
Human Usable Graphical Notations (HUGN). This work
facilitates the generation of graphical notations for arbitrary
metamodels, in a similar way to the generated grammars
and parsers facilitate this approach for textual notations.

JANE is the name of the Pegamento sub-project that is
currently developing a tool of the same name which creates
Eclipse model editor plugins [23]. Mappings of default box-
and-line notations to class-and-association concepts can

result in an ugly, but usable, first approximation of an
editor for creating models. We are yet to investigate exactly
what kinds of customisation model it is necessary to
support in order to allow graphical elements to more
intuitively reflect model semantics.

6. Applying the MDA pattern to BCA

The Basic MDA Pattern shown in Figure 1 can be
applied to the development of tools and implementations
for an ECM system at at least two layers of modelling
abstraction. Although the BCA is model-based, this does
not necessarily make development of a BCA system
amenable to MDA approaches. This is discussed
specifically in Section 6.3.

In order to demonstrate the relationship between these,
and to introduce a notation for comments, we introduce the
“Is Instance Of” pattern in . Figure 14

Figure

This re
an instan
annotation
the Pattern

6.1

To fil
Business
mappings
that the B
(meta-) m

14: Is Instance Of Pattern and Comments

<metamodel>

<model>

is_instance_of

Comment<metamodel>

<model>

is_instance_of

Comment

lationship is specifically limited to a model being
ce of a metamodel. Comments are purely for
 purposes, and are not formally manipulated in
 Language.

Generic Matches

l the Contract Repository component of the
Contract Architecture, the MOF and its standard
 may be used, with the only requirement being

CL’s abstract syntax is expressed as a MOF
odel.

9

6.1

en

tra
do
as
on
pro
asp
Ba

rep
MO
im

BCL-Contract-
Monitor-Description

is_instance_of

BCL-Metamodel

EAI-Metamodel

MOM-App-Servers

ECA-to-EAI

is_PAM_of

target

source

MQ-Series-Messaging-
Metamodel

Webshpere-
MQ

EAI-to-MQ-Series

is_PAM_of

targetsource

EAI-Contract-
Monitor-Design

MQ-Series-Contract-
Monitor-Skel-Impl

MOF-Metamodel
XML-Schema-
Metamodel

MOF
XML

XMI

is_PAM_of is_PAM_of

targetsource

is_instance_of

is_instance_of is_instance_of

BCL-XML-Schema

is_instance_of

=

PAM-to-PAM

PIM-to-PSM PIM-to-PSM

Java-Interface-
Metamodel

Java
JMI

is_PAM_of

target

BCL-Java-Repos-
Interfaces

is_instance_of

PIM-to-PSM

Generic

BCA Specific
BCL-Contract-
Monitor-Description

is_instance_of

BCL-Metamodel

EAI-Metamodel

MOM-App-Servers

ECA-to-EAI

is_PAM_of

target

source

MQ-Series-Messaging-
Metamodel

Webshpere-
MQ

EAI-to-MQ-Series

is_PAM_of

targetsource

EAI-Contract-
Monitor-Design

MQ-Series-Contract-
Monitor-Skel-Impl

MOF-Metamodel
XML-Schema-
Metamodel

MOF
XML

XMI

is_PAM_of is_PAM_of

targetsource

is_instance_of

is_instance_of is_instance_of

BCL-XML-Schema

is_instance_of

=

PAM-to-PAM

PIM-to-PSM PIM-to-PSM

Java-Interface-
Metamodel

Java
JMI

is_PAM_of

target

BCL-Java-Repos-
Interfaces

is_instance_of

PIM-to-PSM

Generic

BCA Specific

Figure 15: BCL Engine MDA Pattern Matches
JMI – a mapping from the MOF, which has a repository
functionality defined independent of programming
language access mechanisms, to Java interfaces defined for
access to instances of a particular metamodel. We
characterise this as a PIM to PSM transformation and so
instantiate the PIM-PSM pattern, and compose it with the
XMI pattern instance:

.1. Model Transformations
In the case of a BAM designed for use in a Java
vironment, we would probably use:
XMI – a semantics and structure preserving
nsformation which creates an XML Schema for
cuments expressing BCL contracts. We characterise this
a PAM to PAM mapping, as the transformation operates
 the metamodelling aspect of the MOF platform, and
duces an expression of the document type modelling
ect of the XML platform. We need to instantiate the
sic MDA pattern to represent XMI:

<PIM-Language> = MOF-Metamodel
<PSM-Language>/Java-Interface-Metamodel
<transform>/JMI
<platform>/Java

As with XMI, the tools associated with mapping MOF
metamodels to Java interface types are also capable of
creating libraries that implement the interfaces, create data
repositories, and give access to instances stored in them.

<metamodel-1>/MOF-Metamodel
<metamodel-2>/XML-Schema-Metamodel
<transform>/XMI

Two Is-Instance-Of patterns are instantiated (and
composed by virtue of the equality of the names chosen).
They are both example instances that would result from
having the BCL Metamodel as the source of the
transformation:

<platform-1>/MOF
<platform-2>/XML
Many platforms also generate a streaming function for a
ository that is capable of exporting any model in the
F repository for a metamodel (BCL in our case) and

porting valid XMI documents into the repository.
<metamodel>/XML-Schema-Metamodel
<model>/BCL- XML-Schema
<metamodel>/Java-Interface-Metamodel
<model>/BCL-Java-Repos-Interfaces

10

6.1.2. Tool Choices <transform>/BCL-to-EAI
<platform> = MOM-App-Servers dMOF fully supports XMI, but version 1.1, which is

based on XML DTDs rather than schemas. In addition, it is
a CORBA-based tool, and so the pattern for mapping to
Java interfaces must go through the intermediate step of
mapping the MOF (meta-)metamodel to CORBA IDL, and
then applying the IDL to Java mapping.

<PSM-Language> = EAI-Metamodel
Then three Is-Instance-Of patterns are instantiated (and

composed by virtue of the equality of the names chosen) to
represent BCA example instances at various stages of
transformation:

<metamodel>/BCL-Metamodel Netbeans supports JMI directly with its MDR repository,
as well as XMI. This implements the transformations in
Figure 15 most directly.

<model>/BCL-Contract-Monitor-Description

<metamodel>/EAI-Metamodel
<model>/EAI-Contract-Monitor-Design However, in order to reuse existing code from previous

prototype versions of BCA implemented in WebSphere, we
would probably adapt the mappings and models above to
use EMF, Tarzan, and Eclipes’ other tools and metamodels.
As Websphere is a branded version of Eclipse which comes
with a more robust J2EE environment, any EMF models
and Eclipse plugins that manipulate them may be directly
integrated with previous BCA code.

<metamodel>/MQ-Series-Messaging-Metamodel
<model>/MQ-Series-Contract-Monitor-Skel-Impl

The final instance is a skeleton implementation that deals
with the event-handling aspects of the BCL-Contract-
Monitor-Description.

6.2.2. The Meta-level Bridge
The link between the generic MDA pattern matches

relating to the MOF, and the BCL-specific pattern matches
can be made using the Is-Instance-Of pattern:

6.2 BCL-Specific Matches using EAI

The aim of the EAI metamodel (Section 0) is to model
messaging-based application integration, in which adaptors
are attached to existing applications in order to expose
events occurring inside them. Data is exchanged with other
applications as messages delivered via a message-oriented
application server platform. These messages can be
manipulated in various ways to make them applicable to all
parties in the integrated application. This is a convenient
match with the BCA, which intercepts events from parties
to a contract, and using the BCL, expresses conditions upon
which parties are notified of relevant occurrences, such as
contract violations or fulfilments, corrective actions, or
state changes.

<metamodel>/MOF-Metamodel
<model>/BCL-Metamodel

Note that the BCL (meta)model plays the role of model in
relation to the MOF (meta-)metamodel, but the role of
metamodel in relation to the BCL contract monitoring
description.

6.3 BCL MDA Pattern Mismatches

Figure 10 shows the ECM that implements the BCA as
a jigsaw with missing pieces; a template framework which
requires actual contract definition parameters for it to
operate on. In [25] the language’s own templating and
instantiation definition mechanisms are also explained.
Effectively they allow a contract to be parameterised, and
only partially instantiated before it takes effect, and the
monitoring conditions in the BCL description can be
executed in the ECM.

6.2.1. The BCL and EAI patterns
The benefit of using the EAI metamodel to express an

ECM design is that mappings exist, or are under
development, from the EAI metamodel to a range of
platforms such as Websphere-MQ, Oracle Application
Server 10, and Fujitsu Siemen’s openSeas. In Figure 15
we have chosen MQ-Series Messaging – now a part of
Websphere – for the same reasons as discussed above for
favouring Eclipse: tool integration and code reuse. We have
fully instantiated the EAI to MOM App Server Pattern
pattern shown in :

Even though the BCL can be represented as a
metamodel, and contracts and their monitoring expressed as
models, there is no easy way to treat templating, as an
exemplar of MDA: either as an expression of a
model/interpreter paradigm, or as the dynamic re-
interpretation of a contract as more information about its
progress becomes available.

Figure 6
<EAI-to-MOM>/EAI-to-MQ-Series
<MOM-App-Server-PAM>/MQ-Series-Messaging-
 Metamodel 7. Conclusion
<MOM-App-Server>/MQ-Series-Messaging

and composed it with a BCL restatement of the PIM-PSM
pattern: We have provided a basic MDA pattern that expresses

the relationships between models and platforms. We have
also shown how to restate and compose this pattern to <PIM-Language>/BCL-Metamodel

 11

express a number of more complex MDA possibilities. We
have used this as an analysis tool to investigate the
application of the Pegamento MDA models and tools to the
development of engines for contract monitoring, as
expressed in the BCA.

The lessons learned are that MDA applies both in a
generic way to any domain language expressed as a
metamodel, as well as allowing for transformations to be
defined mapping the domain semantics to appropriate
platforms. We also see that model-based approaches are not
always amenable to an MDA development solution. In
particular, MDA does not directly address template-based
models.

8. Acknowledgements

The work on modelling and transformation owes a great
debt to the vision of Kerry Raymond, a DSTC founder and
constant re-inventor.

The work reported in this paper has been funded in part
by the Co-operative Centre for Enterprise Distributed
Systems Technology (DSTC) through the Australian
Federal Government's CRC Programme (Department of
Education, Science and Training).

9. References

[1] A.Kleppe, J. Warmer, W. Bast, MDA Explained,
Addison-Wesley, April 2003.

[2] David S. Frankel, Model Driven Architecture:
Applying MDA to Enterprise Computing, Wiley
Publishing Inc., 2003.

[3] J. Miller and J. Mukerji (editors), MDA Guide Version
1.0.1, document number omg/2003-06-01, OMG,
2003.

[4] F. Budinsky, et. al., Eclipse Modelling Framework: A
developers guide, Addison-Wesley, 2004.

[5] David Hearnden, Kerry Raymond, Jim Steel, “Anti-
Yacc: MOF to Text”, IEEE Enterprise Distributed
Object Computing Conference (EDOC’2002),
Lausanne, Sept 2002

[6] Jim Steel, Kerry Raymond, “Generating Human-
Usable Textual Notations for Information Models”,
IEEE Enterprise Distributed Object Computing
Conference (EDOC’2001), Seattle, Sept 2001

[7] Keith Duddy, Anna Gerber, Michael Lawley, Kerry
Raymond, Jim Steel, “Model Transformation: A
Declarative, Reusable Patterns Approach Proc. 7th
IEEE International Enterprise Distributed Object

Computing Conference (EDOC’2003), Brisbane, Sept
2003, pp 174-185

[8] James Cole, John Derrick, Zoran Milosevic, Kerry
Raymond, Author obliged to submit a paper before
July 4: Policies in Enterprise Specification, Policy
2001 Workshop, Bristol, Jan 2001.

[9] S. Kulkarni, Z. Milosevic, Enterprise Integration
through WebServices based Contracts Architecture,
OMG WebServices workshop, San Jose, March
2002.

[10] A.Barros, K. Duddy, M. Lawley, Z. Milosevic, K.
Raymond and A. Wood, Processes, Roles and
Events: Concepts for an O-O Enterprise Architecture,
UML 2000, York, UK.

[11] K. Duddy (editor), UML Profile for Patterns v1.0,
OMG document ptc/03-09-08, OMG 2003.

[12] K. Duddy (editor), Enterprise Collaboration
Architecture v1.0, OMG document ptc/03-09-05,
OMG 2003.

[13] K. Duddy (editor), Flow Composition Model v1.0,
OMG document ptc/03-09-10, OMG 2003.

[14] K. Duddy (editor), UML Profile for MOF v1.0, OMG
document ptc/03-09-11, OMG 2003.

[15] Anna Gerber, Kerry Raymond, “MOF to EMF: There
And Back Again”, Proc. Eclipse Technology
Exchange Workshop, OOPSLA 2003, Anaheim. USA,
Oct 2003, pp 66-70.

[16] Stephen Crawley, Scott Davis, Jaga Indulska, Simon
McBride, Kerry Raymond, “Meta-meta is better-
better!”, IFIP Workshop on Distributed Applications
and Interoperable Systems (DAIS), Cottbus, Germany,
September-October 1997.

[17] K. Czarnecki and U.W. Eisenecker, Generative
Programming – Methods, Tools, and Applications,
Addison-Wesley, 2000.

[18] Z. Milosevic, G. Dromey, On Expressing and
Monitoring Behaviour in Contracts, EDOC2002
Conference, Lausanne, Switzerland

[19] D. Luckham, The Power of Events, Addison-Wesley,
2002

[20] Jean-Michel Bruel, Brian Henderson-Sellers, Franck
Barbier, Annig Le Parc, and Robert B. France.
Improving the UML metamodel to rigorously specify
aggregation and composition, in Proceedings of
OOIS, pages 5--14. Springer-Verlag, August 2001.

 12

 13

[21] Z. Milosevic. Enterprise Aspects of Open Distributed
Systems. PhD thesis, Computer Science Dept. The
University of Queensland, October 1995.

[22] ISO\IEC IS 15414, Open Distributed Processing-
Enterprise Language, 2002.

[23] B. Moore, et. al., Eclipse Development using the
Graphical Editing Framework and the Eclipse
Modelling Framework, IBM Redbooks, February
2004.

[24] Oracle Contracts, http://www.oracle.com/appsnet/
products/contracts/content.html.

[25] Linington, Z. Milosevic, J. Cole, S. Gibson, S.
Kulkarni, S. Neal, A unified behavioural model and a
contract language for extended enterprise, Data
Knowledge and Engineering Journal, Elsevier
Science, to appear.

[26] S. Neal, J. Cole, P. F. Linington, Z. Milosevic, S.
Gibson, S. Kulkarni, Identifying requirements for
Business Contract Language: a
Monitoring Perspective, IEEE EDOC2003
Conference Proceedings, Sep 03.

[27] W-Jan van den Heuvel, H. Weigand, Cross-
Organisational Workflow Integration using Contracts,
Decision Support Systems, 33(3): p. 247-265

[28] Z. Milosevic, A. Josang, T. Dimitrakos, M.A. Patton,
Discretionary Enforcement of Electronic Contracts.
Proc. EDOC '02. pp(s): 39 -50. IEEE CS 2002

[29] Z. Milosevic, S. Gibson, P. Linington, J. Cole, S.
Kulkarni, On design and implementation of a contract
monitoring facility, the first IEEE Workshop on
Electronic Contracting, San Deigo, July 2004.

[30] ww.jcp.org/jsr/detail/40.jsp

[31] www.omg.org/cgi-bin/apps/do_doc?ptc/03-09-04

[32] www.dstc.edu.au/Products/CORBA/dMOF

[33] www.oasis-open.org/committees/legalxml-
econtracts/charter.php

	Introduction
	The MDA Pattern
	What is a PAM?
	The Pattern Language
	Pattern Composition

	Elemental Contract Management System
	Business Contract Architecture
	Business Contract Language
	Main characteristics
	BCL modelling concepts

	Executing BCL

	The MDA tools developed and used by Pegamento
	MOF
	Human Usable Textual Notation (HUTN)
	Anti-Yacc
	EDOC/ECA Metamodel
	Model Apocalypse
	Business Object Facility (BOF)
	A New Metamodel (and a Graphical Approximation)

	EAI Metamodel
	Tarzan
	JANE

	Applying the MDA pattern to BCA
	Generic Matches
	Model Transformations
	Tool Choices

	BCL-Specific Matches using EAI
	The BCL and EAI patterns
	The Meta-level Bridge

	BCL MDA Pattern Mismatches

	Conclusion
	Acknowledgements
	References

