

Towards Formal Modeling of e-Contracts

Olivera Marjanovic and Zoran Milosevic*

School of Information Systems, Technology and Management,
University of New South Wales

Sydney, Australia

*Distributed Systems Technology Centre,
The University of Queensland, QLD 4072 Australia

E-mails: o.marjanovic@unsw.edu.au, zoran@dstc.edu.au

Abstract

The emerging B2B technologies allow for more
automated management of e-contracts including contract
drafting, negotiation and monitoring. As technology
infrastructure becomes available for electronic exchange
of contracts and contract-related messages, the IT
community is becoming more interested in modeling of
contracts as governance structures for many inter-
organisational interactions.

 This paper presents our initial ideas for formal
modeling of e-contracts. This includes specification of
deontic constraints and verification of deontic consistency
associated with roles in a contract, precise modeling of
temporal constraints/estimates and verification of
temporal consistency of an e-contract, and finally
scheduling of the required actions. The paper also
introduces visualisation concepts such as role windows
and time maps and describes how they could be used as
decision support tools during contract negotiation.

1. Introduction

Businesses globally are undergoing a revolution being
driven by a confluence of many different factors such as
global competition, increased customer demands and
emerging technologies. E-commerce has attained
sufficient critical mass to result in the emergence of new
business opportunities. Thus, it is little wonder that
businesses have adopted e-commerce as a way to reach
more customers while enjoying reduced costs.

The last few years have seen a rapid growth in
business-to-business (B2B) e-commerce models. Many
companies, eager to capitalise on this new market, have
joined the world of e-commerce only to have their on-line

stores fail because their current business practices could
not keep pace with the demands of this new environment.
For example, simply offering catalogs on-line and
allowing credit card payments are not challenging
concepts and do not require any great shift from the long
established methods of commerce such as telephone sales.
Many industry analysts and corporate leaders believe that
simple transaction-based business models will have to be
augmented with higher value-added services, if e-
marketplaces are to remain competitive.

In order to ensure legality and protect interests of all
parties involved in e-commerce, electronic business
interactions should be regulated by contracts, as is the
case with traditional business interactions. The emerging
B2B technologies make it possible to support
management of contracts including support for electronic
representation, composition, verification of their validity
and consistency as well as contract negotiation and
monitoring [5].

Currently there are many companies that already offer
or are in the process of developing technical platforms and
solutions (e.g. BizTalk, e-Speak, J2EE etc.) that enable
high-level service composition and execution. As
technology infrastructure becomes available for
exchanging contract related messages, the IT community
is becoming more interested in modeling of contracts as
governance structures for many inter-organisational
interactions.

The main objective of this paper is to describe our
approach towards formal modeling of e-contracts. This
includes formal modeling of deontic constraints and
verification of deontic consistency associated with roles in
a contract, formal modeling of temporal constraints and
estimates, verification of temporal consistency of an e-
contract and finally scheduling of the required actions.
The paper also introduces visualisation concepts such as

role windows and time maps. These simple concepts can
be used for verification and scheduling but also as
decision support tools during contract negotiation.

The paper is organised as follows. Section 2 introduces
e-contract building blocks. It gives a short overview of the
Reference Model of Open Distributed Processing (RM-
ODP) and introduces formal modeling of temporal and
deontic constraints. Section 3 describes formal modeling
of e-contracts. It also introduces visualisation concepts
such as role windows and time maps and explains how
they could be used as decision support tools during
contract negotiation. Finally, Section 4 describes related
work in the area of e-contracting.

2. E-contract building blocks

2.1.The reference model of open distributed
processing (RM-ODP)

The Reference Model of Open Distributed Processing

RM-ODP [2] is increasingly being used for modeling of
complex, open distributed systems. The ODP enterprise
viewpoint defines the purpose, scope and policies for an
ODP system. More precisely, the enterprise language
introduces concepts and terminology necessary to produce
an enterprise specification. With some extensions and
modifications, it has been used as a practical framework
for modeling of virtual enterprises, in particular e-
contracts in B2B services (see for example[1]). In this
section, we provide a brief overview of the basic concepts
applicable to e-contracting.

A concept of community is the main structural element
and reflects some grouping of people and resources in the
real world. A grouping can be considered a community if
it is formed to collectively achieve some objectives. This
collective behaviour is expressed in terms of roles where
each role identifies some subset of the overall community
behaviour that can be meaningfully performed by a single
object within the community. The concept of a role is
sufficiently general to specify the behaviour of entities
which can be either (parts of) IT systems or people.

A contract is a generic RM-ODP concept that specifies
an agreement governing part of the collective behaviour of
a set of objects. It specifies how community objectives
can be met. More precisely, it defines obligations,
permissions and prohibitions for the roles involved. An
obligation is a prescription that a particular behaviour is
required. An obligation is fulfilled by the occurrence of
the prescribed behaviour. A permission is a prescription
that a particular behaviour is allowed to occur. A
permission is equivalent to there being no obligation for
the behaviour not to occur. A prohibition is a prescription
that a particular behaviour must not occur. A prohibition

is equivalent to there being an obligation for the behaviour
not to occur. These definitions are in a style of formal
logic called deontic logic. A formal model of obligation,
permission and prohibition, based on deontic logic, will
be introduced later in the paper.

.
2.2. Modeling of time

The ODP-RM Enterprise viewpoint is yet to address
the temporal nature of obligations, permissions and
prohibitions [3]. However, proper modeling of temporal
constraints is critical in e-contracting especially for its
preparation and verification.

2.2.1. Basic temporal concepts

In this section we introduce primitive temporal

concepts needed for expressing temporal constraints and
relationships in e-contracting. These primitive concepts
can be combined to construct more complex temporal
expressions.

• Absolute time

An absolute time value (also called a time point) is

commonly specified in terms of UTC (Universal
Coordinated Time) that includes specification of different
time zones. This time format is commonly used in
distributed systems that span several time zones.

When working with absolute time the following
relations of temporal precedence are used: “<”, “≤”,
“=”,“>”, “ ≥”, with meaning “before”, “before or at the
same time” “at the same time”, “after” or “after or at the
same time”. A pair of absolute time values (t1, t2) such
that t1 precedes t2 (t1 ≤ t2) is called a time interval.

• Relative time

A concept of relative time is used to model time

duration that is independent from any time point e.g. 2
days, 5 hours. To compare two relative time values we use
the following relative time operators: “<”, “ ≤≤≤≤”, “ =“ “>”, “
≥ “ that are interpreted as “less than”, “less than or equal”,
“equal”, “more than”, “more than or equal”.

Note that since relative time does not have any
temporal reference, in practice it is often combined with
absolute time e.g. 2 days after Date1 where Date1 can be
determined dynamically (an application must be reviewed
2 days after its submission date). This is an example of a
more complex temporal expression.

• Repetitive (periodic) time

The concepts of absolute time (time points) and

relative time are used together to define a concept of
repetitive time. A repetitive time is a set of ordered time
points such that the distance between two consecutive
time points is constant and correspond to some relative
time value d. Thus, a repetitive time values can be
represented as:

r = (tb, te, d)

where tb and tb correspond to the beginning and end of a
time interval that represents the domain of the repetitive
time while d is a relative time that indicates the distance
between time points.

In practice, the concept of repetitive time is used to
describe events that occur regularly, starting from a
certain point in time and are repeated every d time until
the final time point is reached.

2.2.2. Temporal constraints

Temporal constraints are different rules that regulate

the order, timing and duration of individual actions. It is
possible to distinguish between hard and soft temporal
constraints. Hard temporal constraints usually result in
some consequences if the corresponding action is not
performed as required (e.g. late grant applications are not
accepted). This is of particular importance for actions
where any deviation from the prescribed behaviour can be
illegal, dangerous or very costly. Soft temporal constraints
imply that the original temporal constraints could be
relaxed under certain circumstances, however each
relaxation is likely to lead to some kind of penalty e.g.
financial penalty if a project is not completed on time.

• Notation

Before we proceed with formal definitions of temporal

constraints, we introduce the notation that will be used
throughout the paper to define temporal and deontic
constraints.
• action-id is a unique action identifier
• temporal-operator ∈ {“ <”, “ ≤≤≤≤”, “ =“ “>”, “ ≥ “} is

used for comparison of either two relative time values
or two absolute time values

• d-limit is a relative time value that corresponds to a
prescribed time limit

• type ∈ {h,s} determines the type of temporal
constraint i.e. h corresponds to hard and s to soft
temporal constraint.

• temporal-reference ∈ {‘b’,’e’} is used to denote a
beginning ‘b’ or an end ‘e’ of an action.

• deadline is an absolute time value e.g. Date1, Date2
etc.

• distance is a relative time value that corresponds to
the distance between two time points.

• time-period is a relative time value that determines
the period of repetition of an action

• b-time-point and e-time-point are two absolute time
points that determine a domain of the repetitive time

• otime denotes an absolute time value when an action
is estimated to occur

The above notation should be used to interpret the
following definitions of temporal constraints.

• Formal definition of temporal constraints

Duration constraints limit duration of individual

actions (e.g. verification of an application for life
insurance must not take more than 5 working days).
Formally, this constraint is represented as:

Duration (action-id, temporal-operator, d-limit, type)

For example:

Duration (ai, ≤≤≤≤, d, h)

prescribes that action ai must be completed in no more
than d time (as it is a hard temporal constraint). Similarly,

Duration (ai, ≥ , d, s)

prescribes that action ai should take no less than d time to
complete (as it is a soft temporal constraint).

Note that a duration temporal constraint does not
prescribe when an action should/must start and/or finish,
only how long it should/must take.

Hard and soft duration constraints can be visualised as
depicted by Figure 1.

Figure1. Hard and soft duration constraints for

action ai.

An absolute deadline constraint limits, in terms of

absolute time, when an action must/should finish (e.g. the
deadline for grant applications is 2.April, 2001, 5pm
sharp). Formally, it is defined as:

A_Deadline (action-id, temporal-reference, temporal-

operator, deadline, type)

d

ai b ai e

d

ai b ai e

For example:
A_Deadline(ai, e, ≤≤≤≤, Date1, h)

prescribes that action ai must be completed no later than
Date1.

Similarly,

A_Deadline(ai, b, ≤≤≤≤, Date1, s)

prescribes that action ai should start no later than Date1.

Hard and soft absolute deadline constraints can be
visualised as depicted by Figure 2.

Figure. 2. Hard and soft absolute deadline
constraints

A relative deadline constraint limits when an action

must/should begin/end relative to the beginning/end of
another action. The distance between two reference points
is expressed in terms of relative time. Formally:

R_Deadline(action1-id, temporal-reference, temporal-

operator, action2-id, temporal reference,
distance, type)

For example,

R_Deadline (aj, b, ≤≤≤≤ , ai, e, d, h)

prescribes that action aj must start no later than d time
after action ai is completed.

An example of hard and soft relative deadline
constraints is depicted by Figure 3.

Figure 3. An example of hard and soft relative

deadline constraints

Note that relative deadline constraints can be also used

to prescribe the order of individual actions. For example,

R_Deadline (aj, b, = , ai, b, -, s)

prescribes that actions ai and aj should start at the same
time.

Periodic deadlines are temporal constraints used to
prescribe the occurrence of an action in terms of repetitive
time. Formally,

P_Deadline (action-id, temporal reference, time-period,

b-time-point, e-time-point, type)

For example:

P_Deadline (ai, e, d, Date1, Date2, h)

prescribes that action ai should be completed every d time
starting from Date1 until Date2 is reached.

This temporal constraint can be visualised as depicted
in Figure 4.

Figure. 4: An example of a repetitive deadline

constraint

• Temporal consistency

A set of temporal constraints is mutually consistent, if

and only if it is possible to find any assignment of
temporal attributes (beginning, end and duration) for all
actions such that all temporal constraints can be satisfied.

For example suppose that the following two constraints
are given: An action of testing one’s automotive horn
must be performed (completed) once per month.
However, the same action mustn’t occur at the nighttime
(e.g. between 7p.m.and 7a.m.). Thus it is possible to find
an assignment of temporal attributes for this action that
satisfy both temporal constraints (i.e. the action must be
performed once per month between 7 a.m. and 7p.m.)

• Temporal estimates

Temporal estimates are not temporal constraints. They

are based on the accumulated experience and describe
estimated duration and order of individual actions. They
are important for scheduling of individual actions and
resource planning.

Thus, estimated duration of an action is formally
modeled as:

EDuration (action-id, temporal-operator, d-limit)

For example:

EDuration (ai, =, d)

is interpreted that action ai could take d time to complete.

ai b ai e

Date

ai e ai b

Date

d

ai e ai b

d

ai e ai b

d

Date1 Date2 ai e

Estimated occurrence is used to express the fact that an
action could occur after/before some absolute time or
periodically every d time.

EOccurence (action-id, temporal-reference, temporal-

operator, otime)
For example:

EOccurence (ai, b, <, Date1)

is interpreted as: action ai could start before Date1. Again
this doesn’t mean that ai will start at this time or that it
will start at all.

Estimated order is used to express how an action could
start/end relative to the beginning/end of another action.

EOrder(action1-id, temporal-reference, temporal-
operator, action2-id, temporal-reference)

For example:

EOrder(ai, b, <, aj, b)

is interpreted that action ai could start before action aj
starts.

2.3. Deontic constraints

In role-based models (such as for example e-
contracting), roles and their responsibilities have to be
specified explicitly to prevent any possible
misunderstanding or ambiguity. In terms of temporal
attributes, a contract specification includes two temporal
attributes: an absolute time indicating when the contract
was signed and a time interval that specify the period of
contract’s validity. Formally, a contract can be specified
as follows (note that for simplicity all other attributes are
omitted):

C (contract-id, …, date-signed, c-begin, c-end)

where c-begin and c-end are two absolute time points that
determine the period of contract validity. We note that
there are other temporal attributes related to the contract,
such as those related to the actions of parties to the
contract. These are expressed as part of policies
applicable to individual parties as discussed in constraints
applicable to individual roles as below.

Note that for some types of contracts, the right side of
the interval can be initially open (until some other
conditions are fulfilled) or specified but later changed (for
example a home loan contract can be initially valid for 25
years, but the end date can be changed if additional
repayments are made).

Now suppose that contract ci is signed on Date1 and

has a period of validity is (cb, ce).

C (ci, …, Date1, cb, ce)

As already stated, a contract is formally defined as a

set of deontic constraints i.e. obligations, permissions and
prohibitions of various roles. Our representation of
deontic constraints is based on deontic logic that is
extended to include the concept of time.

• Obligations

An obligation can be formally represented as:

O(role, action-id, temporal-reference, temporal-operator,

deadline, tdistance, ob, oe)

where role is obliged to perform action-id either by the
Deadline or every tdistance starting from ob until oe is
reached. Note that (ob , oe) is the period of validity of
this deontic constraint.

This deontic constraint is properly defined if the
following conditions are satisfied:

a) Time interval (ob, oe) has to be contained within (cb,

ce) i.e.
cb ≤ ob ≤ oe ≤ ce

b) Absolute time value deadline has to be within the

period of validity of this deontic constraint i.e.

ob ≤ deadline ≤ oe

c) In the case of repetitive time, Role must be able to
perform Action at least once i.e.

ob + tdistance ≤ oe

The following are some examples of obligations:

O(R1, ai, e, ≤, Date1, -, t1, t2)

it prescribes that role R1 is obliged to finish action ai no
later than Date1. This obligation is valid from time t1 to
t2. Observe that tdistance attribute is not applicable to this
type of deontic constraint.

This deontic constraint will generate two temporal
constraints as follows:

If Date1 = t2 then the deadline could not be extended
and both generated temporal constraints will be hard:

A-Deadline (a1, e, ≤, Date1, h)
A-Deadline (a1, b, >, t1, h)

However, if Date1< t2 then the first temporal constraint
will become soft as deadline Date1 can be extended until
t2.

 A-Deadline (a1, e, ≤, Date1, s)
Similarly,

O(R1, a3, e, =, -, d, t1, t2)

prescribes that role R1 is obliged to complete action a3
every d time, starting from time t1 until time t2 is reached.
As a result the following temporal constraint will be
generated:

P_Deadline (a3, e, d, t1, t2, h)

• Permissions

A permission can be formally represented as:

P(role, action-id, temporal-reference, temporal-operator,

deadline, tdistance, pb, pe)

indicates that role is permitted to perform action-id either
by the deadline or every tdistance starting from pb until
pe is reached.

A permission is well defined if the following
conditions are satisfied: a permission has to be valid
during the period of contract’s validity; absolute time
value deadline has to be within the period of validity of
this permission; and in a case of repetitive time, a role
should be able to perform action-id at least once.

The following are some examples of permissions:

P(R1, ai, b, >, Date1, -, t1, t2)

it states that role R1 is permitted to start action ai after
Date1 and it is valid from time t1 to t2.

Permissions do not result in temporal constraints as
they do not prescribe that action ai must occur. Rather,
two temporal estimates will be generated as follows:

EOccurence (ai, b, > , Date1)

EOccurence (ai, e, ≤ , t2)

meaning that action ai could be expected to start after
Date1 and finish by t2.

The following is an example of periodic permission:

P(R2, ai, b, =, -, d, pb, pe)

that can be interpreted as role R2 is permitted to perform
action ai every d time starting from pb until pe is reached.
This will generate a number of temporal estimates:

EOccurence (ai, b, =, pb+d)

EOccurence (ai, b, =, pb+2d)

The number of temporal estimations is equal to the
maximum number n such that:

pb + nd ≤ pe

• Prohibitions

As already stated prohibitions are used to express that

an action is forbidden to happen. Formally,

F(role, action-id, temporal-reference, temporal-operator,
atime, fb, fe)

states that role is forbidden to perform action-id during a
certain period of time - that is determined by absolute time
value atime and the period of validity of this deontic
constraint: is from fb to fe. Note that prohibitions are
defined for a period of time rather repetitively.

This deontic constraint is properly defined if the
following conditions are satisfied: its period of validity
has to be within the period of contract’s validity and an
absolute time value atime should be within the period of
validity of this temporal constraint.

Note that if an action is prohibited for one role that
does not imply that all other roles are prohibited to do the
same action. For example an administrative officer is
prohibited to sign an authorization for overseas travel
while CEO is permitted to do it.

2.4. Temporal and Deontic Constraints in
Contracts

The primitive temporal concept introduced in 2.2.1 and
various more complex temporal expressions that involve
combination of these primitive concepts can be used for
time characterisation of actions in communities, such as
their duration and temporal relationships between
different actions. In addition, they can be used to
determine temporal consistency of these actions such as
ensuring that an action is prohibited in certain time
interval, but not in another one, as in parking restrictions
in cities.

Furthermore, in the context of a community, the actions
in a community are attributed to the roles that the
community consists of. Hence, the temporal
characterisation of actions can be associated with the roles
in a community. This is indeed more of interest when
analysing union of temporal and deontic constraints in a
community. We note that as policies are defined by a
community, so are the temporal constraints defined by the
community - in fact, in many cases temporal constraints

can be regarded as an integral part of policy statements, as
in obligation to execute some action by some absolute
point in time.

When considering a contract as a specification of roles
in a community, their mutual obligations and other
policies applicable to the roles (such as those arising from
the community's outer scope), there are several areas
where temporarily-enriched deontic expressions can be of
particular importance. They can be used to formally
define consistent (both temporal and deontic) behaviour of
trading partners to a contract. This formal specification
can be then used to facilitate negotiation between parties
to the contract, ensuring a valid contract from the outset
(both in terms of feasibility and legal validity). It can be
also used as an input to some automated monitoring tools
that can be able to interpret policies and thus detect a
behaviour of a party to the contract that is non-consistent
to the contract specification. In this paper, we limit our
discussion to verification of temporal and deontic
constraints.

3. Towards formal modeling of e-contracts

To formally model an e-contract, we use the building

blocks introduced in the previous sections of this paper.

3.1. Visualisation of deontic constraints

A contract is represented as a set of deontic constraints.

Thus the first step is specification of deontic constraints
including specification of roles and their permissions,
obligations and prohibitions. For that purpose we use
formal statements introduced in Section 2.3.

To visualize deontic constraints and corresponding
temporal constraints assigned to a role we use a concept
of a role window (as depicted in Figure 5). A role window
depicts temporal constraints within deontic context. Note
that a contract specifies a community and thus role
windows are always used within the same community.

The role window is divided into 3 different areas that
correspond to obligations (O), permissions (P) and
prohibitions (F) assigned to that particular role. Within
each area parallel time lines are constructed (one per
action). Each timeline has the corresponding time interval
during which an action must or should occur as defined by
the corresponding hard and soft temporal constraints
respectively (as represented in the first area), could occur
(as represented in the second area) or must not occur (as
represented in the third area). The actual duration of each
action is in fact shorter than the corresponding time
interval represented in a role window. This is because an
action is expected to occur within that interval. Also note
that all timelines are limited on the left and right side by
Cb and Ce (i.e. period of contract validity).

Figure 5. A role window for R

The same concept can be further generalised to provide

a “summary” of all role windows for the same contract as
depicted in Figure 6. This summary window is projection
of deontic constraints associated with the same role across
different communities (i.e. contracts) where this role
belongs to. This summary window can be used for cross-
comparison and various analysis of temporal constraints.
Similarly the same concept can be extended to represent
deontic constraints for a single role across different
contracts C1, C2 and C4 as depicted in Figure 6.

Figure 6 A summary window for a single role

across different contracts

R

O

P

F

a7

a1
a2
a3

a4

a3

Date1

R1:all

O

P

F

C4: a2

C1:a1
C1: a2
C2: a4

C1: a4

C1: a3

Date1

The summary windows can be used during

contract execution for monitoring purposes.

3.2. Verification of deontic consistency

After all deontic constraints are specified it is

necessary to perform verification of their temporal
consistency especially when dealing with contracts with
large number of constraints. Verification is based on
deontic logic rules as follows:

The first case of deontic inconsistency arises when the
same role is both obliged and forbidden to do the same
action within the same time interval. In other words
periods of validity of these two deontic constraints
overlap. Observe that the concept of time is crucial here,
because the same role can be permitted to do an action
and then forbidden. However, this situation will not result
in deontic inconsistency as their corresponding time
intervals do not overlap.

Hence, the following two deontic constraints

O(Ri, ai, b, ≤, Date1, -, t1, t2)

F(Ri, ai, b, >, Date2, -, t3, t4)

will result in deontic inconsistency if the following time
intervals: (t1, Date1) and (Date2, t4) overlap.

Similarly the following two deontic constraints:

O(Ri, ai, e, =, -, d, t1, t2)

F(Ri, ai, b, >, Date2, -, t3, t4)

are mutually inconsistent if the following two time
intervals: (t1+d, t2) and (t3,t4) overlap.

Another case of deontic inconsistency arises when the
same role is both permitted and forbidden to do the same
action during the same period of time. Thus the following
two deontic constraints:

P(Ri, ai, b, ≤, Date1, -, t1, t2)

F(Ri, ai, b, >, Date2, -, t3, t4)

are mutually inconsistent if the following two time
intervals: (t1, Date1) and (Date2, t4) overlap.

Similarly, it is possible to verify mutual inconsistency
of obligations and permissions associated with the same
role.

Obviously, the existence of a large number of deontic
constraints can make the problem of manual verification
of their mutual inconsistency time consuming and error-
prone because it is necessary to compare all possible pair

combinations of deontic constraints for the same action
(e.g. prohibitions with obligations etc.) We propose a
simple, yet very effective visual mechanism for
verification of deontic inconsistency based on the
introduced concept of a role window. After a role window
is constructed for each role, visual verification of temporal
constraints can start. For that purpose it is necessary to
take the first area (that corresponds to obligations) and
determine all referential time points (where an interval
start or finish).

After all referential time points are determined in the
first area it is possible to construct a vertical partitions
across all three areas at each referential point (as shown in
Figure 7).

Figure 7: Verification of deontic consistency

So, in order to verify deontic inconsistency instead of

the above manual method, it is necessary to scan the
complete role window partition by partition. This is a
more user-friendly way of verification of deontic
constraints that can be easily automated. If the same
action is detected in the first and third area that
corresponds to prohibition – an inconsistency is detected.

Similar procedure can be used to detect other type of
inconsistency that could occur between the second and
third areas of the role window (that correspond to
permissions and prohibitions). However, in that case
referential points will be determined in the second area
(that corresponds to permissions).

R

O

P

F

a2

a1
a2
a3

a1

a3

Date1

3.3. Verification of temporal consistency and
scheduling of actions

In addition to temporal constraints and estimates

generated by deontic constraints, it is necessary to take
into account other temporal constraints such as relative
deadlines as well as temporal estimates. Note that the
relative deadline constraints can be imposed by various
resource constraints i.e. a resource cannot be shared and
has to be used by a single action at the time.

To visualise temporal constraints and estimates we
propose a simple concept of a time map (as depicted by
Figure 8). Time map depicts temporal constraints
applicable to roles in the community. Nodes of this map
correspond to the time reference points such as beginning
and end points of individual actions. Arcs are labeled by a
temporal operator and a relative time value that
correspond to the time distance between two nodes. Some
nodes have a deadline constraint defined. Arcs used to
represent temporal constraints are visualised as darker
than temporal estimates. The following depicts an
example of a time map.

Figure 8 An example of time map for contract C1

The next step in contract preparation is to schedule
individual actions i.e. to determine their
expected/prescribed beginning and end time and duration
of individual actions. This step is very important because
if a schedule cannot be found that means that some
temporal and deontic constraints cannot be satisfied. Note
that the role window does specify the time period during
which an action must/should or could start, however it
does not specify when exactly within that time period the
action will occur. Thus, role windows are not sufficient
for scheduling of individual actions.

In a very simple contract a schedule can be easily
determined manually. For more complex contracts it is
necessary to use algorithms such as Floyd-Warschall all
pair shortest algorithm introduced in [4].

After the e-contract is prepared i.e. all temporal and
deontic contraints are specified and verified and a
schedule is determined the next step is contract

negotiation. In this process deontic constraints as well as
temporal constraints and estimates can be changed (by the
negotiating parties).

Thus, role windows (both individual and summary) as
well as time maps can be used as decision support tools
for if-then analysis. Because every time when a value of a
temporal attribute is changed, or a role is assigned a
different action, it is necessary to repeat the process of
verification of deontic and temporal consistency and
scheduling of individual actions. Note that the above
introduced concepts of role windows and time maps can
be also used for monitoring purposes during contract
execution. However, monitoring is out of the scope of this
paper.

4. Related Work

A B2B Enterprise Model introduced in [5] is used as a

basis of e-contracting architecture in this paper. Key
elements of the original enterprise model are: contract
repository (used to store standard contract forms and
templates), contract notary used to store signed instances
of standard contracts forms), contract monitor (that
enables monitoring of the business interactions governed
by a contract) and contract enforcer (used to ensure the
compliance with contract terms). This model is currently
being implemented using BizTalk technology and XML
messaging (for more details see [1]).

In order to support formal modeling of contracts as
described in this paper, we argue that the above
architecture has to be extended to include an additional
component called contract verifier. This decision support
component needs to provide tools for construction and
analysis of role windows and time maps, verification of
temporal and deontic consistency and automatic
scheduling of individual actions according to the contract
specification.

In the area of policy-based management for distributed
systems, the related work includes Role-based
Management framework by (Lupu and Sloman, 1999).
The authors also use time when specifying policies,
however we consider more types of temporal constraints.
Furthermore, the authors consider modality conflicts to
detect inconsistencies in policy specification which may
arise when two or more policies with modalities of
opposite sign (e.g. authorized and forbidden) refer to the
same subjects, targets and actions. In our work, to verify
deontic consistency, we take into account not only
different modalities, roles and actions but also the
associated temporal constraints. Because it is important to
verify whether the same role is both obliged and
prohibited to perform the same action within the same
time interval.

Rk:aj b

Ri:ai b
ai

Ri:ai e

Rj:ak b Rj:ak e

Ri:al b
<

≤
≤ d2

=

> Date1 C1

Other related work in the area of e-contracting includes
EU-funded COSMOS project (see [7]) that provides the
set of services that facilitate the use of e-contracts. Much
of the system deals with lower-level communication and
representation issues rather than more contract-specific
issues.

5. Conclusion

E-contracting is becoming increasingly needed as more

and more business are moving on-line. As technologies
for contract management are becoming available, the
focus is shifting from technology to modeling issues.

The main objective of this paper was to describe some
aspects of formal modeling of e-contracts. This process
consists of formal modeling and verification of deontic
constraints, verification of deontic consistency of an e-
contract, formal modeling and visualisation of temporal
constraints and estimates, verification of temporal
consistency of an e-contract and finally scheduling of the
required actions. The paper also introduced visualisation
concepts such as role windows and time maps that can be
used not only for verification and scheduling but also as
decision support tools during contract negotiation.

Our current and future work includes several
extensions and applications of the proposed formalism.
We plan to include support for resource modeling and
management issues. We also plan to utilize this formalism
to facilitate automated monitoring and decision support
during contract execution. For this purpose, the concepts
of role window and time maps introduced in this paper
will be further extended.

ACKNOWLEDGMENT

The work reported in this paper has been funded in part
by the Cooperative Research Centres Program through the
Department of the Prime Minister and Cabinet of the
Commonwealth Government of Australia.

12. References

[1] Herring, C. and Milosevic, Z. (2001), “Implementing
B2B Contracts Using BizTalk”, Proc. of HICSS-34
Conference, Hawaii, Honolulu.

[2] ISO/IEC WD 15414. (1998) Open Distributed
Processing – Reference Model – Enterprise Viewpoint.

[3] Cole, J. et al. (2001), “Author Obliged to Submit Paper
before 4 July: Policies in an Enterprise Specification”,
Policy2001 workshop, Bristol, UK, January.

[4] Dechter, R., Meiri, I., Pearl, J. (1991), “Temporal constraint
networks”, Artificial Intelligence, 49, 61-95.

[5] Milosevic, Z. and Bond, a. (1995), “Electronic
Commerce on the Internet: What is still missing?”, Proc.
of the 5th Conference of the Internet Society, pg. 245-254,
Honolulu.

[6] Lupu, E. and Sloman, M. (1999) “Conflicts in Policy-
based Distributed Systems Management”, IEEE
Transactions on Software Engineering - Special Issue on
Inconsistency Management.

[7] Griffel, F. et al. (1998), “Electronic Contracting with
COSMOS – How to Establish, Negotiate and Execute
Electronic Contracts on the Internet”, EDOC’98
Workshop, La Jolla, California, USA.

