
An Approach for Validating BCL Contract Specifications

Guido Governatori
School of Information Technology and Electrical Engineering
The University of Queensland, Brisbane, QLD 4072, Australia

email: guido@itee.uq.edu.au

Zoran Milosevic
CRC for Enterprise Distributed Systems Technology

Brisbane, QLD 4072, Australia
email: zoran@dstc.edu.au

Abstract
We continue the study, started in [5], on the formal re-
lationships between a domain specific contract language
(BCL) and the logic of violation (FCL) proposed in [6, 7].
We discuss the use of logical methods for the representation
and analysis of business contracts. The proposed analysis
is based on the notions of normal and canonical forms of
contracts expressed in FCL. Finally we present a mapping
from FCL to BCL that can be used to provide an executable
model of a formal representation of a contract.

1. Introduction

Business Contract Language (BCL) is a domain specific
language developed for the purpose of specifying contract
conditions in a way suitable for their run-time evaluation as
the corresponding business processes are executed. The de-
velopment of the language followed a pragmatic path. We
have considered many contracting scenarios while taking
into account the modelling frameworks for the description
of policies and communities [15, 14]. In our recent work,
we have begun checking the consistency of the language by
considering various formalisms such as the formal contract
logic (FCL) [5]. In particular, we have considered a subset
of BCL concepts and have used FCL as a basis to check
their soundness and thus establish the semantic foundation
for that part of the language.

While we are continuing with the process of analysing
the properties and well-formedness of rest for the language,
we are also developing a framework and a set of tools that
allows checking of the validity of BCL specifications them-
selves. In fact, the tools being developed are aimed at pro-
ducing a normal form of a contract in FCL based on the
contract expression in natural language. The normal form
of a contract is one in which conflicts are detected, incon-
sistencies are removed and redundancies eliminated. The
premise of this paper is that, if we establish a mapping from
BCL to a theory based on FCL, then this mapping and the
tools developed in the FCL context, can be used to check
the validity of BCL specifications. Another approach to the

checking of BCL validity was presented in our earlier work
[16].

The accuracy of the representation can affect the perfor-
mance of the monitoring. Given the inherent complexity of
contracts it is possible that BCL specifications may suffer
from inconsistency, conflicts, redundancies or missing con-
ditions. The aim of this paper is to propose a mapping from
BCL to FCL and to show how this mapping, augmented
with the FCL normalisation tools, can be used to address
the formal validation of BCL specifications.

Next section provides a brief description of BCL. In
Section 3 we discuss some issue related to the formalisation
of contract in FCL. Section 4 outlines the FCL normalisa-
tion tools. Section 5 presents mapping from BCL to FCL
constructs. The paper concludes with a list of discussion
points.

2. BCL

Business Contract Language (BCL) has been described
in a number of recent publications involving one of the au-
thors [16, 17, 14] and this section only highlights its key
features to ensure self-containment of this paper. This sec-
tion is based on [5]

In fact, the BCL language consists of several related
sub-languages and this section will only briefly present pol-
icy sub-language. When submitted to a monitoring engine
that implements run time semantics of contract execution,
this language can be interpreted according to the events that
trigger policy activation and evaluations.

A Policy specifies business-level constraints explicitly
associated with a specific Role and the type of constraint is
is further refined using a Modality , indicating whether it is
an obligation, permission or prohibition.

The behaviour associated with a policy is expressed in
terms of events and relationships between events related to
the policy. An event can represent actions of parties to the
contract, some external event from the environment, or a
temporal event.

This expression states a normative constraint that ap-
plies to the role in question, for example, the obligation of

the supplier to make sure the goods are available within one
day of receipt of a purchase order issued by the purchaser.
Thus the event pattern specifies all the events that consti-
tute a normative constraint, including those that effectively
trigger this policy, and that may originate from an exter-
nal source, such as other party or timeout event. Although
the event pattern is sufficient to express behavioural con-
straint in the policy, it may be useful for a policy specifier,
to extract triggering information from the event pattern. We
refer to that part of behaviour expression as trigger. So,
in the example, the triggering event is PurchaseOrder . In
some cases, policy can become active as soon as the system
that implements the policy is activated. In this case trigger
corresponds to the SystemStart .

A generic form of BCL policy is:

Policy:
Role:
Modality:
Trigger:
Behaviour:

EventPattern

For example,

Policy: MakeGoodsAvailable
Role: Supplier
Modality: Obligation
Trigger: PurchaseOrder
Behaviour:

GoodsAvailable.date before (PurchaseOrder.date + 1 days)

The policy specifies the goods availability behaviour
condition as an event pattern. In this case the event pat-
tern is satisfied if the GoodsAvailable event generated by
the Supplier is at most one day after the PurchaseOrder
event was received. This matching is done by checking the
date parameters of both events. The satisfaction of event
patterns means that this obligation policy is satisfied. The
triggering condition for this policy is occurrence of Pur-
chaseOrder event.

BCL also supports expression of guarded conditions ap-
plicable to the BCL event pattern and a number of language
elements that contain event patterns such as policies, state
updates, and notification generation. In general the BCL
guard specifies precondition for the evaluation of the corre-
sponding element. For example, guard can be used to spec-
ify when a policy is to be applied such as in the example
below:

Policy: MaintenanceSupplierIT
Role: Supplier
Modality: Prohibition
Trigger: SystemStart
Guard: on weekday

Behaviour:
ITMaintenance

Note that in this case the guard effectively ‘triggers’ the
policy as this policy is in force at all times during this sys-
tem life-time (unless it is subsequently changed).

This states that the policy will be active for the monitor-
ing purpose only on weekdays (i.e., when its guard condi-
tion is true).

A particular use of guards can be to specify conditions
for the activation of reparation or contrary-to-duty policies.
This will be discussed in detail in next sections and here we
only provide some examples to facilitate subsequent dis-
cussions.

Take for example, the following policy expression (note
that for simplicity we do not elaborate on the exact meaning
of the QualityOfServiceAgreement condition).

Policy: QualityOfServicePolicy
Role: Supplier
Modality: Obligation
Trigger: SystemStart
Behaviour:

QualityOfServiceAgreement at http://suplier/qos1.htm

When a service does not satisfy this condition a viola-
tion event (QualityOfServicePolicyViolated) is to be gener-
ated indicating that this obligation is violated. This con-
dition can then be used in an expression of a guard for a
policy that applies under these circumstances, namely:

Policy: Replace3daysPolicy
Role: Supplier
Modality: Obligation
Guard: HasOccurred QualityOfServicePolicyViolated
Behaviour:

now + 3 days

This new policy will be activated for the monitoring
when QualityOfServicePolicyViolated guard was true, i.e.,
when the violation event of QualityOfServicePolicy was de-
tected. For the detection of this event we use HasOccurred
event pattern expression where QualityOfServicePolicyVio-
lated event is an input parameter and the result is Boolean.
From that point in time the Replace3daysPolicy will need
to be monitored to establish whether Supplier has fulfilled
its contrary-to-duty obligation. Similarly, the violation of
this policy could trigger yet another obligation for the Sup-
plier , namely that is shall refund the purchaser and pay a
penalty of $1000. This last policy is not shown in this ex-
ample.

3. Formal Representation of Contracts

Business contracts are agreements between two or more
parties specifying the obligations, permissions and prohi-
bitions including the actions and the penalties that may be

taken in the case when any of the stated conditions are not
being met.

The clauses of a contract are usually expressed in a cod-
ified or specialised natural language, e.g., legal English. At
times this natural language is, by its nature, imprecise and
ambiguous. However, if we want to monitor the execution
and performance of a contract, ambiguities must be avoided
or at least the conflicts arising from them resolved. In ad-
dition conditions influencing the expected behaviour of the
parties can be specified in different documents and can be
subject to the legislation currently in force. A further issue
is that often the clauses in a contract show some mutual
interdependencies and it might not be evident how to dis-
entangle such relationships. To implement an automated
monitoring system all the above issues must be addressed.

To address some of these issues we propose a formal
representation of contracts. A language for specifying con-
tracts needs to be formal, in the sense that its syntax and
its semantics should be precisely defined. This ensures that
the protocols and strategies can be interpreted unambigu-
ously (both by machines and human beings) and that they
are both predictable and explainable. In addition, a for-
mal foundation is a prerequisite for verification or valida-
tion purposes. One of the main benefits of this approach is
that we can use formal methods to reason with and about
the clauses of a contract. In particular we can

• analyse the expected behaviour of the signatories in a
precise way, and

• identify and make evident the mutual relationships
among various clauses in a contract.

Secondly, a language for contracts should be conceptual.
According to the Conceptualization Principle of [9], this
means that the language should allow their users to focus
only and exclusively on aspects related to content of the
contract, without having to deal with any aspects related to
their implementation. As stated in [9], examples of con-
ceptually irrelevant aspects are, e.g., aspects of (external
or internal) data representation, physical data organisation
and access, as well as all aspects related to platform hetero-
geneity (e.g., message-passing formats).

Every contract contains provisions about the obliga-
tions, permissions, entitlements and others mutual norma-
tive positions that the signatories of the contract subscribe
to. Therefore a formal language intended to represent con-
tracts should provide notions closely related to the above
concepts. Since the seminal work by Lee [13] Deontic
Logic has been regarded as one on the most prominent
paradigms to formalise contracts.

3.1. Obligations, Violations and CTD

Deontic Logic extends classical logic with the modal op-
erators O, P and F . Thus, for example the interpretation
of the formulas OA, PA and FA are, respectively, that A is
obligatory, A is permitted and A is forbidden. A full char-
acterisation of the deontic operators is not crucial in this
paper. All we need is that the deontic operators obey the
usual mutual relationships, i.e.,

OA≡ ¬P¬A ¬O¬A≡ PA O¬A≡ FA ¬PA≡ FA

and are closed under logical equivalence, i.e., if A≡ B then
OA ≡ OB, and satisfy the axiom OA → PA (i.e., if A is
obligatory, then A is permitted) that implies the internal co-
herency of the obligations in a contracts, or, in other words,
it is possible to execute obligations without doing some-
thing that is forbidden.

The obligations in a contract, as well as the other norma-
tive positions that eventually appear in contracts apply to
the signatories of the contract. To capture this we will con-
sider directed deontic operators [11]; i.e., the deontic oper-
ators will be labelled with the subject of deontic modality.
In this perspective the intuitive reading of the expression
OsA is that s has the obligation to do A, or that A is obliga-
tory for s.

Further contracts usually specify actions to be taken in
case of breaches of the contract (or part of it). These can
vary from (pecuniary) penalties to the termination of the
contract itself. This type of construction, i.e., obligations
in force after some other obligations have been violated, is
know in the deontic literature as contrary-to-duty obliga-
tions (CTD) or reparational obligations (because they are
activated when normative violations occur and are meant
to ‘repair’ violations of primary obligations [2]). Thus a
contrary-to-duty is a conditional obligation arising in re-
sponse to a violation, where a violation is signalled by an
unfulfilled obligation. The ability do deal with violations
or potential violations and the reparational obligation gen-
erated from them is one of the essential requirements for
reasoning about and monitoring the implementation and
performance of business contracts.

The idea behind the logic of violation [6, 7] is that the
meaning of a clause of a contract (or, in general a norm
in a normative system) cannot be taken in isolation: it de-
pends on the context where the clause is embedded in (the
contract). For example a violation cannot exist without
an obligation to be violated. The second aspect we have
to consider is that a contract is a finite set of explicitly
given clauses and, often, some other clauses are implicit
(or can be derived) from the already given clauses. The
ability to extract all the implicit clauses from a contract is
of paramount importance for the monitoring of it; other-
wise some aspects of the contract could be missing from

its implementation. Accordingly a logic of violation to be
useful for the monitoring and analysis of a contract should
provide facilities to

1. relate interdependent clauses of a contract and

2. extract or generate all the clauses (implicit or explicit)
of a contract.

As we have just discussed a violation cannot exist without
an obligation to be violated. Thus we have a sequential
order among an obligation, its violation and eventually an
obligation generated in response to the violation and so on.
To capture this intuition we introduce the non-boolean con-
nective⊗, whose interpretation is such that OA⊗OB is read
as “OB is the reparation of the violation of OA” (we will
refer to formulas built using ⊗ as ⊗-expressions); in other
words the interpretation of OA⊗OB, is that A is obligatory,
but if the obligation OA is not fulfilled (i.e., when ¬A is
the case, and consequently we have a violation of the obli-
gation OA), then the obligation OB is in force. The above
interpretation shows that violations are special kinds of ex-
ceptions [6, 7], and several authors have used exceptions
to raise conditions to repair a violation in the context of
contract monitoring [17, 10].

3.2. FCL

We now introduce the logic (FCL) we will use to reason
about contracts. The language of FCL consists of two set
of atomic symbols: a numerable set of propositional let-
ters p,q,r, . . . , intended to represent the state variables of a
contract and a numerable set of event symbols α,β ,γ, . . .
corresponding to the relevant events in a contract. Formu-
las of the logic are constructed using the deontic operators
O (for obligation), P (for permission), negation ¬ and the
non-boolean connective⊗ (for the CTD operator). The for-
mulas of FCL will be constructed in two steps according to
the following formation rules:

• every propositional letter is a literal;

• every event symbol is a literal;

• the negation of a literal is a literal;

• if X is a deontic operator and l is a literal then Xl and
¬Xl are modal literals.

After we have defined the notion of literal and modal literal
we can use the following set of formation rules to introduce
⊗-expressions, i.e., the formulas used to encode chains of
obligations and violations.

• every modal literal is an ⊗-expression;

• if Ol1, . . . ,Oln are modal literals and ln+1 is a literal,
then Ol1 ⊗ . . .⊗Oln and Ol1 ⊗ . . .⊗Oln ⊗Pln+1 are
⊗-expressions.

Each condition or policy of a contract is represented by a
rule in FCL, where a rule is an expression

r : A1, . . . ,An `C

where r is the name/id of the policy, A1, . . . ,An, the an-
tecedent of the rule, is the set of the premises of the rule
(alternatively it can be understood as the conjunction of all
the literals in it) and C is the conclusion of the rule . Each Ai
is either a literal or a modal literal and C is an⊗-expression.

The meaning of a rule is that the normative position
(obligation, permission, prohibition) represented by the
conclusion of the rule is in force when all the premises of
the rule hold.

Thus, for example, the second part of clause 5.1 of the
contract (“the supplier shall refund the purchaser and pay
a penalty of $1000 in case she does not replace within 3
days a service that do not conform with the published stan-
dards”) can be represented as

r : ¬p,¬α ` OSupplierβ

where p is propositional letter meaning that “a service has
been provided according to the published standards”, α

is the event symbol corresponding to the event “replace-
ment occurred within 3 days”, and β is the event symbol
corresponding to the event “refund the customer and pay
her the penalty”. The policy is activated, i.e., the supplier
is obliged to refund the customer and pay her a penalty
of $1000, when the condition ¬p is true (i.e., we have a
faulty service), and the event “replacement occurred within
3 days” lapsed, i.e., its negation occurred.

The connective ⊗ permits combining primary and CTD
obligations into unique regulations. The operator ⊗ is such
that ¬¬A ≡ A for any formula A and enjoys the properties
of associativity

A⊗ (B⊗C)≡ (A⊗B)⊗C,

duplication and contraction on the right,

A⊗B⊗A≡ A⊗B.

The right-hand side of the equivalence above states that B
is the reparation of the violation of the obligation A. That
is, B is in force when ¬A is the case. For the left-had side
we have that, as before, a violation of A, i.e., ¬A, generates
a reparational obligation B, and then the violation of B can
be repaired by A. However, this is not possible since we
already have ¬A.

The formation rules for ⊗-expressions allows a permis-
sion to occur only at the end of such expression. This is due

to fact that a permission can be used in a reparation of a vi-
olation, but it is not possible to have violation of a permis-
sion, thus it makes no sense to have reparations to permis-
sion. Sometimes contracts contain other mutual normative
positions such as delegations, empowerment, rights and so.
Very often these notions can be effectively represented in
terms of complex combinations of directed obligations and
permissions [3]. Hence violations to such complex notions
result in violations to the obligations describing such no-
tions.

4. Normalisation tools for FCL

In the previous section we presented a formalism suit-
able to represent contract when contracts are understood as
sets of “normative” policies. Here we will examine how
the formalism can be used to analyse contracts and to rea-
son about them.

As we have argued in Section 3 the aim of a formal
representation is to provide facilities for a precise and un-
ambiguous description of the specification of a contract.
However, due to their nature, contracts are often complex
documents written in (a specialised) natural language. Ac-
cordingly it is possible that two contract domain engineers
might come up with different representations for one and
the same contract –this might also be the case when one
designer formalises a (part of) contract at different times.
Therefore there is the need to compare two different ver-
sions of the same contract to determine whether they are
equivalent. Versions of a contract can also be obtained from
different drafts of a contract –for example in the contract
negotiation phase when the parties involved in the negoti-
ation propose their drafts of the contract to be concluded–
and one wants to know whether two versions produce the
same effects or the versions are compatible with each other.
To this end we will introduce transformations on the formal
representations of a contract (FCL) to produce a normal
form of the same (NFCL). When normal forms are gener-
ated we can compare them for equivalence and compatibil-
ity. This is possible since normal form contains all contract
conditions that can be generated/derived from the condi-
tions explicitly given in the formal representation of the
contract.

Normal forms are also beneficial in other respects. They
can be used to identify formal loopholes, deadlocks and in-
consistencies in a contract. A domain expert can examine
the normal form of a formal representation of a contract to
determine the correctness and completeness of the formal
representation of the contract and eventually to discover
semantic drawbacks of the contract. A complete and cor-
rect normal form is called a canonical form of the contract
(CFCL). Since canonical forms are complete and hence
contain all conditions of a contract they can be mapped to a

BCL representation, aimed at the implementation and mon-
itoring of the contract using the mapping from FCL to BCL
given in [5].

Notice that there can be many normal forms for a con-
tract, but there is only one canonical form of a contract,
since normal forms are the expansions of (potentially par-
tial) formal specifications of a contract. The idea is that a
normal form is the closure under some logical operations
of a fragment of a contract, while the canonical form is the
closure of all fragments of a contract (fragments can over-
lap).

This means that, in order to improve the quality and
completeness of the representation, it is possible to com-
pare and integrate normal forms obtained from different
contract designers.

Figure 1 illustrates a scenario where there are two equiv-
alent (formal) versions of the contract FCL1 and FCL2. The
two versions are equivalent since they produce the same
normal form (NFCL1). On the other side FCL3 corresponds
to a normal form that does not coincide with NFCL1. Thus
we can compare and integrate the two normal forms to pro-
duce the canonical form of the contract CFCL, which in
turn is mapped to an executable BCL program.

Figure 1. FCL Normalisation Process

In the rest of this section we introduce the procedures
to generate normal forms. First (Section 4.1) we describe
a mechanism to derive new contract conditions by merging
together existing contract clauses. In particular we link an
obligation and the obligations triggered in response to vio-

lations of the obligation. Then, in Section 4.2, we examine
the problem of redundancies, and we give a condition to
identify and remove redundancies from the formal specifi-
cation of a contract. Finally in Section 4.1 we consider the
issue of normative conflicts in contracts. More precisely
we define when two contract clauses are mutually incon-
sistent and we briefly discuss two possible alternatives to
deal with such cases.

4.1. Merging Contract Conditions

One of the features of the logic of violation is to take
two rules, or clauses in a contract, and merge them into a
new clause. In what follows we will first examine some
common patterns of this kind of construction and then we
will show how to generalise them.

Consider a policy like (in what follows Γ and ∆ are sets
of premises)

Γ ` OsA.

Given an obligation like this, if we have that

∆,¬A ` Os′C,

then the latter must be a good candidate as reparational
obligation of the former. This idea is formalised is as fol-
lows:

Γ ` OsA ∆,¬A ` Os′C
Γ,∆ ` OsA⊗Os′C

This reads as if there exists a conditional obligation whose
antecedent is the negation of the propositional content of
a different norm, then the latter is a reparational obliga-
tion of the former. In this way, the CTD obligation can
be forced to be an explicit reparational obligation with re-
spect to the violation of its primary counterpart. Accord-
ingly, it seems reasonable to discard both premises when
they are subsumed by the conclusion. Their reciprocal in-
terplay makes them two related norms so that they cannot
be viewed anymore as independent obligations. Notice that
the subjects and beneficiaries of the primary obligation and
its reparation can be different, even if very often in con-
tracts they are the same.

Suppose the contract includes

r : Invoice ` OPurchaserPayWithin7Days

and

r′ : ¬PayWithin7Days ` OPurchaserPayWithInterest.

From these we obtain

r′′ : Invoice ` OPurchaserPayWithin7Days⊗
OPurchaserPayWithInterest.

The schema in (4.1) can also generate chains of CTDs in
order to deal iteratively with violations of reparational obli-
gations. The following case is just an example of this pro-
cess.

Γ ` OsA⊗OsB ¬A,¬B ` OsC
Γ ` OsA⊗OsB⊗OsC

For example consider a contract for service containing the
following clauses

5.1 The (Supplier) shall ensure that the
(Services) are available to the (Pur-
chaser) under Quality of Service Agree-
ment (http://supplier/qos1.htm). (Services)
that do not conform to the Quality of Ser-
vice Agreement shall be replaced by the
(Supplier) within 3 days from the notifica-
tion by the (Purchaser).

5.2 If for any reason the conditions stated in
5.1 are not meet, the (Supplier) shall refund
the (Purchaser) and pay the (Purchaser) a
penalty of $1000.

The above two clauses can be represented by the following
two rules

r : Invoice ` OSupplierQualityOfService⊗
OSupplierReplace3days

and

r′ :¬QualityOfService,

¬Replace3days ` OSupplierRefund&Penalty

from which we derive the new rule

r′′ : Invoice ` OSupplierQualityOfService⊗
OSupplierReplace3days⊗
OSupplierRefund&Penalty.

The above patterns are just special instances of the general
mechanism described by the following inference mecha-
nism

r : Γ ` OsA⊗ (
⊗n

i=1 OsBi)⊗OsC r′ : ∆,¬B1, . . . ,¬Bn ` XsD
r′′ : Γ,∆ ` OsA⊗ (

⊗n
i=1 OsBi)⊗XsD

where X denotes either an obligation or a permission. In
this last case, we will impose that D is an atom. Since the
minor premise states that XsD is a reparation for OsBn, i.e.,
the last literal in the sequence

⊗n
i=1 OsBi, we can attach

XsD to such sequence.

4.2. Removing Redundancies

Given the structure of the inference mechanism it is pos-
sible to combine rules in slightly different ways, and in
some cases the meaning of the rules resulting from such
operations is already covered by other rules in the con-
tract. In other cases the rules resulting from the merging
operation are generalisations of the rules used to produce
them, consequently, the original rules are no longer needed
in the contract. Thus some clauses can be removed from
the contract without changing the meaning of it. To deal
with this issue we introduce the notion of subsumption be-
tween rules. Intuitively a rule subsumes a second rule when
the behaviour of the second rule is implied by the first rule.

We first introduce the idea with the help of some exam-
ple and then we show how to give a precise formal defini-
tion of the notion of subsumption appropriate for FCL.

Let us consider the rules

r : Invoice ` OSupplierQualityOfService⊗
OSupplierReplace3days⊗
OSupplierRefund&Penalty,

r′ : Invoice ` OSupplierQualityOfService⊗
OSupplierReplace3days.

The first rule, r, subsumes the second r′. Both rules
state that after the seller has sent an invoice she has
the obligation to provide goods according to the pub-
lished standards, and if she fails to do so –i.e., if
she violates such an obligation–, then the violation
of QualityOfService can be repaired by replacing the
faulty goods within three days (OSupplierReplace3days).
In other words OSupplierReplace3days is a secondary
obligation arising from the violation of the primary
obligation OSupplierQualityOfService. In addition r
prescribes that the violation of the secondary obli-
gation OSupplierReplace3days can be repaired by
OSupplierRefund&Penalty, i.e., the seller has to refund
the buyer and in addition she has to pay a penalty.

As we discussed in the previous paragraphs the condi-
tions of a contract cannot be taken in isolation in so far
as they exist in a contract. Consequently the whole con-
tract determines the meaning of each single clause in it. In
agreement with this holistic view of norms we have that
the normative content of r′ is included in that of r. Ac-
cordingly r′ does not add any new piece of information to
the contract, it is redundant and can be dispensed from the
explicit formulation of the contract.

Another common case is exemplified by the rules:

r : Invoice ` OPurchaserPayWithin7Days⊗
OPurchaserPayWithInterest,

r′ : Invoice,¬PayWithin7Days `OPurchaserPayWithInterest.

The first rule says that after the seller sends the in-
voice the buyer has one week to pay it, otherwise the
buyer has to pay the principal plus the interest. Thus
we have the primary obligation OPurchaserPayWithin7Days,
whose violation is repaired by the secondary obligation
OPurchaserPayWithInterest, while, according to the sec-
ond rule, given the same set of circumstances Invoice
and ¬PayWithin7Days we have the primary obligation
OPurchaserPayWithInterest. However, the primary obliga-
tion of r′ obtains when we have a violation of the primary
obligation of r. Thus the condition of applicability of the
second rule includes that of the first rule, and then they
have the same normative content. Therefore the first rule is
more general than the second and we can discard r′ from
the contract.

The intuitions we have just exemplified can be fully cap-
tured by the following definition.

Definition 1 Let r1 : Γ ` A⊗B⊗C and r2 : ∆ ` D be two
rules, where A =

⊗m
i=1 Ai, B =

⊗n
i=1 Bi and C =

⊗p
i=1 Ci.

Then r1 subsumes r2 iff

1. Γ = ∆ and D = A; or

2. Γ∪{¬A1, . . . ,¬Am}= ∆ and D = B; or

3. Γ∪{¬B1, . . . ,¬Bn}= ∆ and D = A⊗
⊗k≤p

i=0 Ci.

The idea behind this definition is that the normative content
of r2 is fully included in r1. Thus r2 does not add anything
new to the system and it can be safely discarded.

4.3. Detecting Conflicts

Conflicts arises naturally in contracts. What we have to
determine is whether we have genuine conflicts, i.e., the
contracts is in some way flawed or whether we have prima-
facie conflicts. A prima-facie conflict is an apparent con-
flict that can be resolved when we consider it in the context
where it occurs and if we add more information the conflict
disappears. For example let us consider the following two
rules:

r : PremiumCustomer ` OsDiscount

r′ : SpecialOrder ` Os¬Discount

Saying that Premium Customers are entitled to a discount
(r), but there is no discount for goods bought with a special
order (r′). Is a Premium customer entitled to a discount
when she places a special order? If we only have the two
rules above there is no way to solve the conflict just using
the contract and there is the need of a domain expert to
advise the knowledge engineer about what to do in such
case. The logic can only point out that there is a conflict in

the contract. On the other hand, if we have an additional
provision

r′′ : PremiumCustomer,¬Discount ` OsRebate

Specifying that if for some reasons a premium customer
did not received a discount then the customer is entitled
to a rebate on the next order, then it is possible to solve
the conflict, because the contract allows a violation of rule
r to be amended by r′′, using the merging mechanism we
analyse in Section 4.1.

The following rule is devised for making explicit con-
flicting norms (contradictory norms) within the system:

Γ ` A ∆ ` ¬A
Γ,∆ ` ⊥

(1)

where

1. there is no rule Γ′ ` X such that either ¬A ∈ Γ′ or X =
A⊗B; and

2. there is no conditional rules ∆′ ` X such that either
A ∈ ∆′ or X = ¬A⊗B; and

3. for any formula B, {B,¬B} 6⊆ Γ∪∆.

The meaning of these three conditions is that given two
rule, we have a conflict if the normative content of the two
rules is opposite, such that none of them can be repaired,
and the the states of affairs/preconditions they require are
consistent.

Once conflicts have been detected there are several ways
to deal with them. The first thing to do is to determine
whether we have a prima-facie conflict or a genuine con-
flict. As we have seen we have a conflict when we have
two rules with opposite conclusions. Thus a possible way
to solve the conflict is to create a superiority relation over
the rules and to use it do “defeat” the weaker rule (this
is the strategy adopted in [4]). A second alternative is to
supplement the antecedent of one rule with an additional
guard (this kind of technique has been proposed in a gen-
eral logical setting in [1] to remove priority over rules,
though the precise details could depend on the underly
logic). Notice that currently BCL does not support prior-
ity over rules/policies, thus the guard approach could be
more suitable for BCL.

4.4. FCL Normal Forms and Canonical Forms

We are now ready to outline how the apply the logical
machinery we have developed to deal with business con-
tracts before we transform the logical representation in a
language apt to monitor the execution of a contract. This
consists of the following three steps:

1. Starting from a formal representation of the explicit
clause of a contract we generate all the implicit condi-
tions that can be derived from the contract by applying
the merging mechanism of FCL.

2. We can clean the resulting representation of the con-
tract by throwing away all redundant rules according
to the notion of subsumption.

3. Finally we use the conflict identification rule to label
and detect conflicts.

In general the process at step 2 must be done several times
in the appropriate order as described before. The normal
form of a set of rules in FCL is the fixed-point of the above
constructions. A contract contains only finitely many rules
and each rule has finitely many elements. In addition it is
possible to show that the operation on which the construc-
tion is defined is monotonic [7], thus by standard set theory
results the fixed-point exists and it is unique. However, we
have to be careful since merging first and doing subsump-
tion after produces different results from the opposite order
(i.e., subsumption first and merging after), or by interleav-
ing the two operations.

If there is only one normal form of a contract then the
normal form coincides with the canonical form of the con-
tract. In case there are multiple normal forms of a con-
tract, for example if the contract has been built in a mod-
ular way from several (sub-) contract templates [12], we
have to combine the normal forms to check for their com-
pleteness and mutual consistency. This means that we have
to union the sets of rules from each normal form and to
repeat the fixed-point construction of step 2, and then to
identify the eventual conflicts. After these operations we
obtain the canonical form of the contract. A domain expert
can use the canonical form to check that the representation
of a contract covers all aspects of the contract, and, in case
of conflicts, she suggests which interpretation is the more
faithful to the intent of the contract, and she can point out
features included in the contract but missing in its formal
representation.

5. Mapping BCL to FCL

In this section we will provide a mapping from BCL to
FCL that allows us to apply the formal validation and veri-
fication procedure to a BCL program. However we will re-
strict ourselves to the mapping of only the policy fragment
of BCL. The proposed mapping can be integrated with the
mapping from FCL to BCL presented in [5] to analyse a
fragment of a BCL program with formal method and to re-
turn a normalised/canonical BCL program for a contract
(See Figure 2).

Figure 2. BCL-FCL-BCL Transformation Cycle

We will assume a fixed but arbitrary mapping that ex-
tracts the elements of a BCL policy fragment and map
them to basic components of FCL (literals, rules labels, and
modal operators). Thus for example the auxiliary function
behaviour(p) takes a policy p, extracts the behaviour of
the policy and returns the FCL literals corresponding to the
behaviour of the policy. Similarly for the function name,
trigger, role and state.

The mapping pmap of a BCL policy1

Policy: pId
Role: roleId
Modality: Obligation, Permission, Prohibition
Trigger: eventPatterns
Guard: states, HasOccurred pId’ Violation
Behaviour: eventPattern

to a FCL rule is defined as follows:
If the policy does not contain HasOccurred pId’ Violated

1The following policy is a schema of policy. The modality is one of
Obligation, Permission or Prohibition, and in the guard can be ei-
ther a set of states or a state signalling that policy pId’ has been violated.

then

pmap(pId) =
name(pId) : trigger(pId),states(pId)

` Xrole(pId)behaviour(pId)

where X is O if Modality: Obligation, P if Modality: Permis-
sion and O¬ if Modality: Prohibition. Otherwise the map-
ping is

pmap(pId) =
name(pId) : trigger(pId),states(pId),¬behaviour(pId′)

` Xrole(pId)behaviour(pId)

Let us illustrate the above procedure with two examples
Given the following BCL policy:

Policy: id=7.1
Role: Supplier
Modality: Permission

Trigger: not PayWithin7Days
Guard: 2Delays
Behaviour: Terminate

Since no HasOccurred pId’ Violated guard occurs in the
policy we can use the first part of the mapping to obtain
the FCL rule

7.1 : 2Delays,¬PayWithin7Days ` PSupplierTerminate

On the other hand if we want to map the policy

Policy: id=6.1.0
Role: Purchaser
Modality: Obligation

Trigger: SystemStart
Guard: HasOccurred 6.1 Violated
Behaviour: PayWithInterest

we have to use the second condition of the mapping yield-
ing the following FCL rule.2

6.1 : ¬PayWithin7Days ` OPurchaserPayWithInterest.

6. Discussion

In [5] we presented a mapping from FCL to BCL with
the aim to provide a way to implement contracts analysed
in terms of FCL in a domain specific language. Here we
have pursued the opposite direction. We have given a map-
ping from BCL to FCL. In this way we are able to validate
and verify BCL with the formal tools provided by FCL. At
the same time we have been able to identify some possi-
ble extension for the two formalism. For example FCL has

2The SystemStart event is mapped to a null literal in FCL.

been extended to cope with conflicts via the combination
of FCL with Defeasible Logic [4], but this important fa-
cility is not present in BCL. On the other hand, so far FCL
has no capability to reason about temporal notions but BCL
is expressive enough to describe different type of temporal
constraints (deadline, sliding windows and so on). To ob-
viate to this problem we intend to supplement the formal
model supplied by FCL with the temporal framework de-
veloped for temporalised normative positions on a similar
formalism in [8].

Acknowledgements

We would like to thank Peter Linington and Antonino
Rotolo for their fruitful comments on previous versions of
this work. Thanks are also due to the CoALa05 anonymous
referees for their valuable criticisms.

The first author was supported by the Australia Research
Council under Discovery Project No. DP0558854 on “A
Formal Approach to Resource Allocation in Web Service
Oriented Composition in Open Marketplaces”.

The work reported in this paper has been funded in
part by the Co-operative Research Centre for Enterprise
Distributed Systems Technology (DSTC) through the Aus-
tralian Federal Government’s CRC Programme (Depart-
ment of Education, Science, and Training).

References

[1] Grigoris Antoniou, David Billington, Guido Governatori,
and Michael J. Maher. Representation results for defea-
sible logic. ACM Transactions on Computational Logic,
2(2):255–287, 2001.

[2] José Carmo and Andrew J.I. Jones. Deontic logic and con-
trary to duties. In D.M. Gabbay and F. Guenther, editors,
Handbook of Philosophical Logic. 2nd Edition, volume 8,
pages 265–343. Kluwer, Dordrecht, 2002.

[3] Jonathan Gelati, Guido Governatori, Antonino Rotolo, and
Giovanni Sartor. Normative autonomy and normative co-
ordination: Declarative power, representation, and mandate.
Artificial Intelligence and Law, 12(1-2):53–81, March 2004.

[4] Guido Governatori. Representing business contracts in
RuleML. International Journal of Cooperative Information
Systems, 14(2-3):181–216, June-September 2005.

[5] Guido Governatori and Zoran Milosevic. Dealing with con-
tract violations: formalism and domain specific language. In
9th International Enterprise Distributed Object Computing
Conference (EDOC 2005). IEEE Computer Society, 2005.

[6] Guido Governatori and Antonino Rotolo. A Gentzen system
for reasoning with contrary-to-duty obligations. A prelimi-
nary study. In Andrew J.I. Jones and John Horty, editors,
∆eon’02, pages 97–116, London, May 2002. Imperial Col-
lege.

[7] Guido Governatori and Antonino Rotolo. Logic of viola-
tions: A Gentzen system for reasoning with contrary-to-duty

obligations. Australasian Journal of Logic, 2005.
[8] Guido Governatori, Antonino Rotolo, and Giovanni Sartor.

Temporalised normative positions in defeasible logic. In
10th International Conference on Artificial Intelligence and
Law (ICAIL05), pages 25–34. ACM Press, 2005.

[9] J.J. van Griethuysen, editor. Concepts and Terminology for
the Conceptual Schema and the Information Base. Publ.
nr. ISO/TC97/SC5/WG3-N695, ANSI, 11 West 42nd Street,
New York, NY 10036, 1982.

[10] Benjamin N. Grosof and Terrence C. Poon. SweetDeal:
representing agent contracts with exceptions using XML
rules, ontologies, and process descriptions. In 12th Inter-
national Conference on World Wide Web, pages 340–349.
ACM Press, 2003.

[11] Henning Herrestad and Christen Krogh. Obligations di-
rected from bearers to counterparts. In 5th International
Conference on Artificial Intelligence and Law (ICAIL’95,
pages 210–218. ACM Press, 1995.

[12] Yigal Hoffner and Simon Field. Transforming agreements
into contracts. International Journal of Cooperative Infor-
mation Systems, 14(2-3):217–244, 2005.

[13] Ronald M. Lee. A logic model for electronic contracting.
Decision Support Systems, 4:27–44, 1988.

[14] Peter F. Linington, Zoran Milosevic, James B. Cole, Simon
Gibson, Sachin Kulkarni, and Stephen Neal. A unified be-
havioural model and a contract language for extended enter-
prise. Data & Knowledge Engineering, 51(1):5–29, 2004.

[15] Peter F. Linington, Zoran Milosevic, and Kerry Raymond.
Policies in communities: Extending the odp enterprise view-
point. In 2nd International Enterprise Distributed Object
Computing Workshop (EDOC98), La Jolla, November 1998.

[16] Zoran Milosevic and R. Geoff Dromey. On expressing and
monitoring behaviour in contracts. In 6th International En-
terprise Distributed Object Computing Conference (EDOC
2002), pages 3–14. IEEE Computer Society, 2002.

[17] Zoran Milosevic, Simon Gibson, Peter F. Linington,
James B. Cole, and Sachin Kulkarni. On design and im-
plementation of a contract monitoring facility. In 1st IEEE
Workshop on Econtracting (WEC04), pages 62–70. IEEE
Computer Society, July 2004.

http://eprint.uq.edu.au/archive/00002222/01/tocl.pdf
http://eprint.uq.edu.au/archive/00002222/01/tocl.pdf
http://eprint.uq.edu.au/archive/00002229/01/GeGoRoSa04.pdf
http://eprint.uq.edu.au/archive/00002229/01/GeGoRoSa04.pdf
http://eprint.uq.edu.au/archive/00002225/01/coala.pdf
http://eprint.uq.edu.au/archive/00002225/01/coala.pdf
http://eprint.uq.edu.au/archive/00002472/01/bcl.pdf
http://eprint.uq.edu.au/archive/00002472/01/bcl.pdf
http://eprint.uq.edu.au/archive/00001893/01/deon02.pdf
http://eprint.uq.edu.au/archive/00001893/01/deon02.pdf
http://eprint.uq.edu.au/archive/00001893/01/deon02.pdf
http://eprint.uq.edu.au/archive/00002629/01/main.pdf
http://eprint.uq.edu.au/archive/00002629/01/main.pdf
http://eprint.uq.edu.au/archive/00002629/01/main.pdf
http://eprint.uq.edu.au/archive/00002279/01/ic05.pdf

	Introduction
	BCL
	Formal Representation of Contracts
	Obligations, Violations and CTD
	FCL

	Normalisation tools for FCL
	Merging Contract Conditions
	Removing Redundancies
	Detecting Conflicts
	FCL Normal Forms and Canonical Forms

	Mapping BCL to FCL
	Discussion

