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Abstract — This paper proposes an approach for building 
scalable AI applications in digital health, with a specific focus 
on addressing interoperability, consent and ethics challenges. 
These challenges need to be considered in the context of 
increasingly available tooling for streamlined model 
development, training, validation, and deployment, while 
accommodating novel solutions for explainable AI support for 
clinicians. Such an approach is required because digital 
health ecosystems involve many data type created by different 
systems, and often used as part of workflows over different 
jurisdictional boundaries. Interoperability solutions are 
needed to support technical and business agreements between 
parties providing data and services, including knowledge 
intensive services, such as ML and AI. Computable expression 
of consent and ethics policies are needed to control how 
patient information is used, including compliance with 
regulative rules, possibly from different policy contexts. Our 
approach, based on the latest interoperability and enterprise 
policy standards may provide a useful guidance for the 
practitioners building scalable AI solutions for digital health. 
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I.  INTRODUCTION  

A. Problem  
There is increasing level of tooling available to support 

building AI applications. This includes streamlined model 
development, training, validation, and deployment such as 
available by Microsoft Azure [1], Amazon [2] and Google 
[3]. AI applications in digital health however require 
addressing additional challenges. The first one 
interoperability, from technical, information (i.e. semantic) 
and business perspectives, needed to support aggregating 
and processing data from many sources and sharing them 
across applications and users in a digital health ecosystem. 
The second one is supporting consumers in expressing their 
consent preferences to specify finer level of control over 
how their personal health data can be shared or exchanged. 
The third one is supporting transparency about ethics 
principles, in the environment involving increasing level of 
automated decision making and multiple stakeholders.   

B. Key contributions  
This paper is focussing on these three factors as specific 

enablers for building scalable AI applications. The paper 
provides two main contributions: 
x A set of architectural and implementation guidance in 

support of building interoperable and open digital 
health ecosystems, accommodating many different 
types of AI applications  

x computable expressions of policies associated with 
consent and ethics requirements, so that such 
expressions can be integrated with the digital health 
enriched with analytics and AI applications  

The paper addresses software modelling and 
implementation gaps in these areas. In particular, the paper 
addresses the lack of the expression of computable policies 
in support of consent and ethics policies that govern access 
to, and exchange of, personal health information. We have 
recently proposed an approach [12][16], based on the RM-
ODP enterprise language standard [4] and in this paper, we 
further elaborate on this approach in the context of digital 
health applications for primary healthcare domain covering 
requirements of general practitioners. Such applications are 
often referred to as practice management software (PMS). 

C. Background 
The paper is in part motivated by our research and 

practitioner experience in addressing digital health 
problems over last 15+ years or so. This period has seen: 
x the increasing focus on interoperability as a way of 

addressing the fragmentation of data and applications 
in support of healthcare, as evident by the prominence 
of several interoperability frameworks [19] and more 
recently by the emergence of new HL7 standard, Fast 
Health Interoperability Resources (FHIR) [5] 

x many new technologies, e.g., cloud, streaming, IoT, 
distributed ledgers, digital twins and new generation of 
ML and AI, that have created fertile ground for 

x stronger involvement of patients and consumers, in 
accessing, controlling and making decision about their 
data, as part of their healthcare or wellness, in response 
to new regulative rules and also COVID19 issues [41] 

x various regulative and normative approaches such as 
the US 21st Century Cure Act [13] and the European 
GDPR Regulation [14].    

 
These technological, consumer-centric and standards 

developments, along with the recognition for new models of 
care, including care coordination across providers, 
personalisation, and genomics, are leading to the emergence 
of new generation of digital health ecosystems. These 
ecosystems provide foundations for safer, more efficient, 
and patient-centred care, with AI applications allowing for 
further benefits in support of better care, e.g. clinical images 
analysis in diagnostic systems, detecting bone structures, 
identifying eye disease, sepsis prediction in ICUs etc.  

D. Scalable AI 
The specific AI applications in healthcare mentioned 

above address discrete use cases, each of which has its own 
set of data, specific computation models, validation criteria 
etc. In general, however, AI can be applied to multiple set 
of data, including real-time data, across different clinical 
systems and services in the ecosystem, and possibly 
according to different patient consent and privacy 
preferences as part of continuity of care. These applications 



also need to respect and be compliant with appropriate 
ethics or legal requirements.  

This requires a scalable AI approach, which refers to the 
ability of algorithms, data, models, and infrastructure to 
operate at the size, speed, and complexity required for the 
problem across the organisations or even jurisdictions [6].  

There is an increasing number of solutions that can be 
facilitated to adopt and enable scalable AI within healthcare 
organisations [6][7][10], allowing for the streamlined model 
development, training, validation, and deployment. There is 
also active research in explainable AI [9] and we expect 
these solutions to increase trust among clinicians in 
adopting AI as an additional tool in their practice.    

The scalable approaches to AI however require 
agreement about the semantics of health information to be 
used, which has been one of the main interoperability 
challenges in digital health over decades. There is also 
further requirement about business agreement related to 
interoperability which is needed to support seamless 
operations across organisational boundaries, including how 
to handle patient consent preferences across different 
healthcare providers. Further challenge, brought by big 
data, analytics and AI is how to ‘bake in’ ethics principles 
as part of AI based solutions.  

There are currently many references focusing on the 
identification of key ethics principles, such as privacy data 
protection, fairness, contestability, compliance and 
accountability [17][21], but there is increasing recognition 
for the need to support mechanisms for translating these 
principles into computable expression, to allow developers 
to include these as part of their AI solutions, as also stated 
in our recent study [12][16]. 

E. Paper structure 
This paper is structured as follows. Section II highlights 

the holistic view on interoperability as an enabler for the 
creation of sustainable digital health ecosystems, including 
the role of the HL7 Fast Health Interoperability Resources 
(FHIR®) standard. Section III describes the role of consent 
and describes an approach to a computable expression of 
policies in general, and consent in particular, which can add 
trust to users about controlled access to their data. Section 
IV provides an ‘ethics by design’ methodology that can be 
used in guiding practitioners in broader policy context 
associated with ethics, and specifically in translating ethics 
principles into computable expressions to ensure 
responsible use of AI. Section  V provides discussion about 
how our approach can be applied in the context pf practice 
management systems, i.e. digital health system centred 
around primary care providers. Section VI discusses several 
additional challenges, and Section VII provides summary 
and outlines future work directions. 

 

II. INTEROPERABILITY – FOR BUILDING SUSTAINABLE 
DIGITAL HEALTH ECOSYSTEMS 

A. General considerations 
Healthcare delivery involves many providers on patient 

journey, such as general practitioners, specialists, allied 
health and many support staff, all of whom are involved in 
access to and exchange of patient health and personal 
information, while respecting applicable set of clinical and 
administrative policies. This, coupled with the digital 

applications developed by different vendors and at different 
level of maturity presents a significant complexity for 
people and organisations to interoperate, in support of more 
effective, efficient, and safe delivery of care.  

In order to address dealing with different aspects of 
interoperability, from technical and organisational 
perspectives, several interoperability frameworks were 
published to assist various stakeholders in the understanding 
of their interoperability concerns and guide them to their 
solutions, as summarised in [19]. In addition, several health 
standards were developed by HL7 international, most 
notably FHIR [5], which is now gaining significant adoption 
by wider developer community.  

B. Interoperability Frameworks   
In general, interoperability can be defined as [19]: 
The continual ability of an organisation (or a system) to 

use or offer business (or technical) services from or to 
another organisation (or system) and accordingly, 
exchange information (or data) with other organisations (or 
systems) to achieve a specified purpose in a given context.  

This definition caters for three different perspectives of 
interoperability, the organisational, information and 
technical interoperability. The organisational perspective is 
about specifying the business context, legal and policy 
issues of relevance for understanding, specifying and 
deploying digital health systems.  This typically includes 
concepts for the expression of business processes, business 
services, business policies and organisational structures, 
applicable to the intra-organisational, inter-organisational 
and cross-jurisdictional interactions.  

The information perspective is focused on the semantics 
of information used for representing clinical and 
administrative concepts, description of key information 
components and their relationships, e.g. medication, allergy 
intolerance, vital signs, appointment and so on. Typically, 
the information components will refer to certain artefacts in 
the organisational perspective, e.g. an information 
component referring to a referral or an appointment.  

The technical perspective is concerned with developing 
applications and technical services that implement 
enterprise models defined as part of the organisational 
perspectives and handling information components defined 
from the information perspective. It is also about specifying 
technical infrastructure components such as cloud, mobile 
devices, IoT and so on, and conformance requirements.  

It is to be noted that these are different, but related 
architecture abstractions that can be applied to any digital 
health ecosystem, to facilitate the separation of concerns 
among those interested in business, clinical or technical 
aspects when designing, building and deploying services in 
such an ecosystem.  

C. Fast Health interoperability Resources (FHIR)  
HL7 FHIR [5] is the latest HL7 standard which 

addresses information requirements in terms of the 
specification of information components, rereferred to as 
‘FHIR resources’, and their relationships. FHIR is also 
dealing with technical interoperability owing to several 
infrastructure components proposed to support building 
solutions while leveraging the latest web standards and 
applying a tight focus on implementability, as discussed 
next. 



The main modelling concept in FHIR is called a 
resource, which is an information component that can be 
used to exchange and/or store healthcare data. Resources 
cover clinical and administrative components but also 
include several foundational components needed for the 
overall infrastructure of the FHIR specification [5]. The 
mainstream resources are focussed on clinical content 
models, but it is increasingly recognised that many digital 
health applications require explicit support for defining and 
implementing services and processes (workflows), with 
additional support for the expression of enterprise policies 
that apply to those involved in delivery of healthcare, 
including patients themselves. FHIR provides limited 
support for such policy concepts at present but it is excepted 
to evolve, as a result of its use and community feedback. 

Many digital health projects are now looking at using 
FHIR for new digital health applications, while leveraging 
legacy systems, and the standard is gaining significant 
interest and adoption. In fact, FHIR is becoming foundation 
for many digital health ecosystems.  

One example is Health Concourse [7], developed for the 
purpose of linking and processing data coming from many 
data sources, aggregating them and subsequently 
transforming them in canonical model based on FHIR 
(Figure 1). The aim is to use such FHIR complaint 
information components in provision of knowledge services 
for clinicians, such as deriving clinical quality measures 
and, in some cases, creating new insights (e.g. ML, AI and 
Clinical Decision Support systems), which are then 
recorded as new FHIR resources. Such normalised data or 
newly created data can then be linked as part of clinical 
workflows and made available via portals or dashboards to 
clinicians and patients (engagement layer), while respecting 
security, consent, privacy, ethics, and other policies 
(specifying as part of Data Access services layer). 

 

 
Figure 1: A Digital Health Ecosystem 

 
There are many integration points in such a digital health 

ecosystem where analytics or AI services can be inccluded. 
For example, real-time analytics systems can be integrated 
to intercept source data from laboratory systems and apply 
business rules, such as duplicate orders, data quality 
assurance or clinical decision as was reported in [8]. In 
addition, these rules can be augmented with ML rules to 
support continuous adjustment of training sets in real time. 
Similarly, one can access data from IoT devices and apply 
specific rules either on-fly or once the data are stored in 
appropriate repositors for subsequent processing. These 
however require ability to develop interceptors for 
messaging systems.  

The use of FHIR canonical model on one hand adds to 
the common understating of information models in an 
ecosystem and, on the other hand, serves as the foundations 
for many specialised vendors to provide value-add 
knowledge services, such as Clinical Decision Support 
(CDS), analytics or ML/AI, while accessing data 
repositories such as electronic health records or even legacy 
systems stores. The common understanding associated with 
the standard representation of healthcare concepts in FHIR 
resources, is also key for supporting patients in defining 
their privacy and consent preferences for providers in 
accessing their data, at any level of granularity as required. 
This can be supported using the FHIR consent resource.   

It is to be noted that FHIR can be regarded as a logical 
model, with the resources used for specific applications 
deployed within cloud or distributed system environments. 

III. CONSENT– FOR USER CONTROL AND TRUST  
Consent mechanism is increasingly becoming an 

important element in supporting individuals in controlling 
access to their personal information, such as per GDPR 
regulations in Europe [14]. In healthcare, this is also a result 
of trends towards increasing patient awareness and 
empowering the patient in the healthcare process, as for 
example dictated by the US 21st Century Cure act [13].   

Consent is an important element in the context of AI 
applications as well. For example, individuals may want to 
define how access to their healthcare information is used by 
AI systems. This is to ensure that this information is used as 
a means of helping to improve their own healthcare, or 
healthcare of others (e.g. through involvement in research 
studies), but they may wish to specify controls to protect 
them against misuse of this information for other purposes, 
such as for commercial interest of AI solution vendors.  

The above examples suggest a value in the transition of 
the usual, paper expression of consent into computable 
representations. One such initiative is a recent HL7 
standardisation effort on Consent Management Service 
[11], which is a platform independent model (PIM) for 
specifying consent. This PIM can be applied to any specific 
platform, such as for example FHIR consent resource [5]. 
This PIM model was influenced by several commercial and 
standardisation efforts, the latter of which is the RM-ODP 
standard [1]. It was also influenced by our recent work on 
modelling computable expression of enterprise policies, 
based on the use of deontic and accountability concepts, as 
presented in [12].  

Section III.A provides a summary of our approach for 
computable expression of policies, as introduced in our 
earlier work [12], and its application to modelling consent. 
This is essentially part of organisational interoperability 
concerns introduced earlier, and it is to be noted that the 
proposed policy model is generic and can be used for the 
computable expression of ethics (see section IV). 

A. Generic computable model for enterprise policies 
The specification of enterprise policies can be expressed 

in terms of constraints for the actions of the parties who 
participate in interactions. These constraints are typically 
prescribed by an external authority, e.g. a legislative, 
jurisdictional or regulative context, such as, HIPPA [39], 
US Final Cure Act [13] and GDPR [14]. A policy context 
thus consists of rules prescribed by the applicable 



jurisdictions or organizational entities, and we use the RM-
ODP concept of community, domain and federation [1] to 
model this context, as elaborated next. 

 
1) Policy context – community model  

A community defines how a set of participants should 
behave in order to achieve an objective. These participants 
(or enterprise objects in RM-ODP terms) fulfill roles in a 
community, and thus accept policy constraints that apply to 
the roles, as stated in the contract for community [20].  At 
any point in time, at most one enterprise object can fulfil a 
community role, but an enterprise specification may include 
a number of roles of the same type, each fulfilled by distinct 
enterprise objects, possibly with the constraint on the 
number of roles of that type that can occur, for example, 
maximum number of patients in a ward. Note that most 
enterprise objects display behaviour and are thus referred to 
as active enterprise objects, the special kind of which is 
party, with legal responsibility and accountability, as 
introduced in section III.A.2).  

A community role can thus be played by a party, which 
models a natural person or legal entity, and its behaviour is 
constrained by the behaviour specified by that role. A role 
in a community can also be played by another community, 
making it possible to model hierarchical policy contexts.  

A specific type of community suitable for the defining 
policy contexts is domain community (or simply a domain). 
A domain can be used to model legal or regulative contexts 
for which a particular controlling object, for example, legal 
or regulatory authority, prescribes a set of policies that 
define legal or regulative constraints for individual 
members of that domain. Examples are obligations, 
prohibitions or permissions defined by the General Data 
Protection Regulation (GDPR) authorities and the 
controlling objects are the so-called Data Controllers [14]. 
Another example of the controlling object is that of National 
Data Protection Authority, tasked with protecting 
information privacy [42]. 

Domains can be arranged hierarchically, through 
subdomains, which are subsets of a given domain, but can 
also be federated. Expressing federation is important for 
healthcare interoperability in view of the need to manage the 
combined actions of private and public stakeholders within 
health sector and across other sectors [19]. 

 
2) Policy constraints - deontic concepts 

There are three fundamental types of policy constraints 
that reflect rules of any normative system, namely 
obligations, prohibitions and permissions [4]. Their formal 
expression is the subject of deontic logic [18] and these are 
often referred to as deontic constraints. 

An obligation is a prescription that a particular 
behaviour is required. An obligation is fulfilled by the 
occurrence of the prescribed behaviour. 

A permission is a prescription that a particular behaviour 
is allowed to occur. A permission is equivalent to there 
being no obligation for the behaviour not to occur. 

A prohibition is a prescription that a particular 
behaviour must not occur. A prohibition is equivalent to 
there being an obligation for the behaviour not to occur. 

The above definitions have been the subject of standard 
deontic logic [18], but their application in enterprise 
distributed computing requires explicit association with the 

agent to which these constraints apply. This is also needed 
to consider an agent’s goal-seeking behaviour, which may 
result in their willingness to violate the policies with the 
expected benefit of reward from doing so.  

The way that deontic constraints are associated with the 
agents is through the concept of deontic tokens [4]. These 
are enterprise objects which encapsulate deontic constraint 
assertions. The holding of the deontic tokens by active 
enterprise objects constrains their behaviour. This 
modelling approach provides a basis for manipulating 
deontic tokens, for example, passing them between parties 
to model delegations, and activation or de-activation of 
policies that apply to the active enterprise objects. There are 
three types of deontic tokens that represent deontic 
constraints. These are called burden, representing an 
obligation, permit, representing permission and embargo, 
representing prohibition. 

In the case of a burden, an active enterprise object 
holding the burden must attempt to discharge it either 
directly by performing the specified behaviour or indirectly 
by engaging some other object to take possession of the 
burden and perform the specified behaviour. In the case of 
permit, an active enterprise object holding the permit is able 
to perform some specified piece of behaviour, while in the 
case of embargo, the object holding the embargo is inhibited 
from performing the behaviour [4]. 

In order to support the changes in policies that apply to 
active enterprise objects, the concept of a speech act is 
introduced. This is a special kind of action that is used to 
modify the set of tokens held by an active enterprise object. 
The name was chosen by analogy to the linguistic concept 
of speech act, which refers to something expressed by an 
individual that not only presents information but performs 
an action as well [27]. So, a speech act changes the state of 
the world in terms of the association of deontic tokens with 
active enterprise objects, such as patient giving permit to a 
researcher to access their health record.  

Deontic constraints and tokens provide foundations for 
expressing many types of policy constraints across 
enterprise objects in a system, including both human actors 
and automated agents, such as AI systems. ODP-EL 
provides added formalism to express traceability of 
obligations of parties, according to their broader 
responsibilities derived from ethical, social or legal norms 
[20]. This formalism is referred to as accountability 
concepts, as described next. 

3) Policy constraints - accountability concepts 
We have informally introduced the concept of party in 

III.A.1). Formally, party is defined as an enterprise object 
which models a natural person or any other entity 
considered to have some of the rights, powers and duties of 
natural person, for example, company [4]. ODP-EL 
introduces two other concepts which are useful to describe 
many forms of delegation in enterprise systems. Principal 
is defined as a party that has delegated something (e.g. 
authorization or provision of service) to another, and Agent 
is defined as an active enterprise object that has been 
delegated something (e.g. authorization, responsibility of 
provision of service) by, and acts for, a party (e.g. in 
exercising the authorization, carrying out responsibility). 

Delegation is an action that assigns something (e.g. 
authorization, responsibility of provision of service) to 
another object. It is through this mechanism that deontic 



tokens can be passed across different active enterprise 
objects, with one example being a delegation from principal 
to agent, as mentioned above. Delegation is one action type 
in ODP-EL related to accountability, but there are several 
other action types to capture important business events in 
any organizational system, and reflect the dynamics of 
communication amongst parties, and broadly, active 
enterprise objects. These action types are listed next [4]. 

Commitment is an action resulting in an obligation by 
one or more participants in the act to comply with a rule or 
perform a contract. This effectively means that they will be 
assigned a burden. Examples include commitments by 
clinicians to deliver safe, reliable and effective healthcare. 

Declaration is an action by which an object makes facts 
known in its environment and establishes a new state of 
affairs in its environment. This can, be performed by an AI 
system (or a party managing it), for example, informing the 
interested parties about the result of some analysis. 

Evaluation is an action that assesses the value of 
something, which can be in terms of variables such as 
importance, preference, and usefulness. In digital health, 
variables can be performance parameters used, through 
research applications for example, to either express 
administrative performance or some accuracy or reliability 
measures. They can be used to assess the fairness of training 
data or as part of mechanisms to measure the impact of AI 
algorithms as part of their explainability requirements [12]. 

Prescription is an action that establishes a rule. 
Prescriptions provide a flexible and powerful mechanism 
for changing the system’s business rules at runtime, 
enabling dynamic adaptation to respond to business changes 
and new needs. This ability is important in any digital health 
system, to establish the applicability of new policies, such 
as reflecting new legislations, or after the adoption of 
recommendations from AI system components [12]. 

Authorization is an action indicating that a particular 
behaviour shall not be prevented. Unlike a permission, an 
authorization is an empowerment. In terms of deontic 
tokens, the enterprise object that has performed 
authorization will issue a required permit and will itself 
undertake a burden describing its obligation to facilitate the 
behaviour. For example, the authorization for the consumer 
to challenge AI decisions is giving them permit to do so by 
the AI system (or its creator/manager) who has the burden 
to do so [16]. 

 

B. Modelling privacy consent 
This section illustrates how the generic policy concepts 

introduced above can be used to represent policy constraints 
associated with privacy consent.  

The privacy consent is modelled using the key roles of 
Grantor and Grantee, supported by several other roles 
needed for consent management.  
These roles are thus part of the privacy consent community, 
which are described next, together with several applicable 
deontic and accountability constraints, and as initially 
proposed in [12].   

 
Figure 2: Privacy consent management community 

 
1) Privacy consent community – key roles 

This community specifies the following role types: 
x Grantor (Figure 2), to be fulfilled by any individual 

giving consent under a set of permission rules, 
reflecting some competence criteria, such as being of 
legal age, having normal cognitive function etc.  

x Grantee, to be fulfilled by professionals with the 
required credentials, namely: 
x Clinician, with permission to access Grantors’ 

individual health information for care purposes, 
covered by the patients consent for primary care, 
e.g. access to all of the patient information in an 
emergency situation, with certain constraints, 
such as time period from the emergency event. 

x Researcher, with permission to access Grantors 
de-identified health data for research purposes and 
obligation not to perform re-identification of 
patient data, as prescribed by National Data 
Protection Authority. 

x Consent Authority, a trusted party responsible for 
storing individuals’ consents and overseeing the 
consent agreement rules; it can also facilitate ethics 
approvals for the secondary use of data. 

x Research Broker, a legal entity authorized to search 
patient health data and consent data to identify patients 
suitable for research projects. The Broker is 
responsible to ensure that patient preferences are 
enforced. It is accountable to the Consent Authority 
and the National Data Protection Authority. 

x National Data Protection Authority, responsible for 
defining and enforcing data protection policies, as 
legislated [42]. 

x Electronic Health Record (EHR) provider, who is 
custodian of individuals’ personal health data in their 
EHR records. 

x Automated Decision-Maker, performing analytics, 
recommendations and in some cases, active decision-
making; this role guides and augments activities of 
clinicians, researchers, and other stakeholders, such as 
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population health experts; this role can be fulfilled by 
clinical decision support systems or AI systems. 

x Audit Tracker, which logs events associated with 
actions of clinicians and researchers to generate audit 
trails, which can be used for subsequent activity 
analysis, such as performed by an Auditor, listed next;  

x Auditor, who provides analysis of event traces 
produced as above to support performance analysis or 
forensic investigations, to detect breaches and their 
consequences; an example is detecting breaches of 
clinicians accessing healthcare records outside of them 
providing care, or researchers accessing linked data 
provided by third parties, both of which are forbidden. 

2) Deontic constraints 
The following are examples of deontic constraints that 

apply to the roles of the privacy consent community [16]: 
• Permission of the Grantor given to the Consent 

Authority to store consent agreements, for example, valid 
for a specified time period defined by the Grantor. 

• Permission of the Grantor to the Broker to search 
patients’ data and if it satisfies researcher criteria include a 
link to this data in a data set for the researcher. 

• Obligation on the Audit Tracker to log data access by 
the Grantee reliably and on-time and provide access to the 
audit trail by the Auditor; the tracker may also have an 
obligation to log actions of Research Broker which may be 
needed for forensic purpose. 

• Authorization of the Grantor to the Grantee to access 
the Grantor’s individual health information; this is realized 
through this chain of authorization: 

– Grantor issues permit to the Research Broker for 
searching their data to establish whether they satisfy 
research question criteria. 

– Research Broker issues a research permit to the 
researcher which includes a list of Grantors that provided 
consent to access their de-identified health data and whose 
data satisfy the research question. 

– EHR provider provides access permit to the researcher 
to access health records of specific patients, provided 
researcher has credentials requested by the EHR provider. 

3) Accountability constraints 
Authorization is modelled using a combination of permit 

and burden deontic tokens. For example, authorization of 
the Grantor to the Broker involves both the permit being 
passed from the Grantor to the Broker to search its record 
but also places an obligation on the Grantor itself, through 
the corresponding burden, to ensure that access to its record 
is ultimately enabled. This authorization action is also a 
speech act because it changes the deontic state of both the 
Grantor and Grantee. The effect of this speech act is that the 
existing Grantor’s permit to the Broker to search its 
healthcare data is passed on to the Grantee. In this example, 
we assume that the consent directive gives permission to the 
Researcher to access the Grantors health data but prohibits 
access to the Grantor’s mental health data (if it exists).  

The use of speech acts and deontic tokens provides 
flexibility in describing the dynamics of deontic constraints 
and passing of tokens, including to the parties with ultimate 
legal responsibility. For example, many data protection 
rules defined by a National Data Protection Authority set 
accountability and legal responsibility expectations for 
actions of researchers involved in using grantor’s data. 

These data protection rules were established through 
prescription actions), performed by the National Data 
Protection Authority, which essentially establishes 
obligations and permissions for all the parties involved in 
accessing patient data. 
 

IV. ETHICS – FOR RESPONSIBLE DATA ACCESS AND 
SHARING  

The expression of privacy consent, as a vehicle for 
patients to state their desires for controlling the use of their 
personal health information, as often considered as part of a 
broader ethics framework, which is about the doings of 
‘rights’ or ‘wrongs’ in the context of delivering healthcare. 

Ethics challenges have become more prominent in 
recent times due to potential concerns associated with the 
use of AI. These include the impact of AI decisions on 
patient care, without full ability to interpret AI algorithm 
decision making process, or how to attribute accountability 
to such decisions in case of clinicians’ use of it. There are 
increasing efforts to develop ethics principles to guide the 
design and implementation of AI enabled systems in general 
[15], and with specific digital health focus  [17].  

We believe that a computable expression of ethics 
principles and ethics concepts can be a useful tool for 
practitioners faced for designing and deploying AI systems 
as part of their digital health enterprise. The following 
provides a summary of our approach and recommendations 
as initially proposed in [16]. 

Firstly, we proposed a structured approach for 
progressive refinement of ethics principles into formal 
models that can support reasoning about, designing, 
implementing and running AI-enabled digital health 
systems. We refer to this as ‘ethics-by-design’ methodology 
and again, we use a deontic-based formalism as a common 
theme for two aspects of the refinement problem. At the 
analysis level, we use it to facilitate the expression of the 
ethics principles to guide what the system should or should 
not do. At the design level, we use it for precise expression 
of behaviour constraints of actors involved in a digital 
health system, including their accountability, as introduced 
in the previous section.   

The following set of ethics principles are identified for 
consideration when embarking on any digital health 
projects, as summarised in [16], and based on [10] and [17]: 
x Privacy data protection – must ensure that people’s 

private data are protected and prevent breaches that 
could cause any damage to people 

x Accountability – should identify people and 
organisations responsible for the design and 
implementation of digital health systems, including AI  

x Compliance – must comply with relevant international, 
national, regulatory and legislative frameworks 

x Safety and reliability – must ensure that systems are 
designed to avoid any negative impact to consumer 

x Fairness – must ensure the training data for machine 
learning is free from bias that might cause the algorithm 
to behave unfairly against individual or groups. 

x Explainability – must inform consumers about how 
exactly their data is used by an AI system and how it 
makes decisions 

x Contestability – must allow consumers to challenge the 
output of the AI algorithm when it impacts them  



x Do no harm – must not be designed to harm or deceive 
people through its decisions. 

 
1) Ethics-based analysis 

The ethics principles express rules that specify the 
expected properties of a digital health system to reflect 
ethics requirements. These rules can be treated as the 
deontic modalities that apply to the system, considered as an 
entity performing actions, including decision making that 
can affect consumers. These in turn can serve as an input to 
the detailed design and run-time enforcement which 
includes deontic constraints that apply to the participants 
involved in the system.  

Consider first the privacy protection principle.  This can 
be modelled as an obligation of the system to respect 
privacy constraints for accessing personal health data, as 
specified by the consumers’ consent. This obligation can 
then be refined into a number of fine-grained, design-level 
constraints, on actions of agents involved in controlling and 
accessing private health information. This includes 
individuals who specify consent rules (grantors), 
clinicians/researchers who access personal information for 
the primary/secondary use purpose (grantees), and 
authorities involved in the governance over the use of 
personal data. 

The compliance principle can be interpreted as an 
obligation of a system to respect the applicable regulation 
and legislative rules, such as the Privacy Act in Australia 
and related regulations to do with secondary use data.  

The accountability principle can be regarded as an 
obligation for a digital health system to identify parties 
legally responsible for the creation and deployment of the 
system. The ability to clearly represent chains of 
accountability and responsibility, including the links to 
appropriate legislative and regulatory authorities, increases 
consumers trust, in particular in AI enabled systems.  

Safety and reliability, has been a core principle of the 
development of medical technologies for quite some time 
[17], referring to the obligations of medical devices and 
clinical systems (i.e. their providers) to deliver services in a 
way that is unlikely to cause danger, risk, or injury to 
individuals. This is directly related to the DoNoHarm 
principle identified in [10] as an AI ethics principle, which 
states that “civilian AI systems must not be designed to 
harm or deceive people and should be implemented in ways 
that minimise any negative outcomes”. This can be 
modelled as a prohibition of the system to create an 
algorithm that could cause harm to the application 
consumer. This prohibition should be then traced back to the 
obligations of the system creator not to design such a 
system, which is again manifested in their accountability, 
typically delegated to their organisation. Note that machine 
learning algorithms do not provide safety and reliability 
guarantees typical in safety critical systems such as 
pacemaker devices. This is because of their inherent 
stochastic nature, and further research is required to better 
position AI solutions in the context of such guarantees. A 
recent direction is in combining machine learning with 
automated reasoning techniques to support building 
explainable and dependable AI systems [34]. 

The explainability principle of an AI system is an 
obligation of an AI system to provide information to the 
users about how the AI algorithm makes a decision and 

which data set it is using to do so. This is of particular 
importance when such systems are used for clinical decision 
making to augment the work of clinicians. There are several 
techniques that assist in explaining AI’s decision-making 
process, of which the LIME method (Local Interpretable 
Model-Agnostic Explanations) attracted a lot of attention 
recently[31]. Further, some authors propose the use of 
blockchain to track all the stages in AI algorithms as a way 
of understanding decision making processes. Such 
blockchain-based trails can assist to determine whether 
humans (and who specifically) or machines are at fault in 
case of accidents [28]. 

The contestability principle can be expressed as an 
obligation of an AI system to allow (i.e. give permission to) 
consumers to challenge the use or output of the algorithm. 
This permission can also be considered as an authorisation 
given to the consumer to participate in the challenge 
process.  

2) Ethics-based design 
The system level deontic statements presented in the 
previous section can be translated into detailed behavioural 
constraints for the actions of the parties and system 
components involved, according to the ODP-EL standard, 
introduced.  

Figure 3 depicts the applicability of deontic and 
accountability constraints on automated and legal entities 
and their links with the development methodology, of which 
analysis and design were discussed above. A specific 
development environment would dictate a set of tools for 
build and run phases. UML-based model-driven tools with 
UML profile for ODP support can be a potential candidate 
[20], integrated with specific AI platforms. Further, specific 
technology platforms can be used, and they can impact the 
selection of controls, such as the some distributed ledgers, 
which provides new solutions for the implementation and 
protection of digital identifiers [26]. 

 
Figure 3: Ethics aware development methodology 

 

V. CASE STUDY – PRACTICE MANAGEMENT SYSTEMS 
This section provides an example of how the concepts 

introduced in previous sections can be applied in the context 
of a digital health ecosystem focused on primary care 
provision in Australia. We are leveraging current 
architecture approaches with the aim to position future 
requirements to better support patient-facing and patient-
controlled support. The focus is on supporting the 
integration of consent and ethics computational 
components, while leveraging the emerging interoperability 
approaches and technologies based on FHIR. 
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A. Consent 
The organisational concerns are captured by the 

objectives, key roles and policies of the privacy consent 
management community introduced in Figure 2. In the 
context of primary care, a patient typically has their own 
general practitioner (GP), using a Practice Management 
Software (PMS) system to support capturing clinical and 
administrative information about patients in their own 
electronic health records (EHR)1. Further, in relation to the 
roles of the consent management community, a patient 
fulfills the role of a Grantor, GP fulfills the role of Grantee, 
and a PMS provider fulfills the role of EHRProvider. Patient 
Individual Health Information (IHI) is typically stored in a 
database record of a PMS, which can be either a desktop 
system or increasingly deployed on a cloud-based platform. 
Note that in Australia, it is the Office of the Australian 
Information Commission, acting as national data protection 
authority for Australia [42]. 

The information concerns are defined by an information 
model, the elements of which capture key clinical 
information components, such as observation, medication, 
but also administrative concepts such as patient 
demographics, appointments, payments. These concepts are 
typically implemented using columns in a relational 
database in PMS systems but are increasingly migrating into 
component and service-based model, in particularly when 
deployed in the cloud environment. One such approach is 
the use of HL7 FHIR standard to represent information 
models, using FHIR resources as introduced in section II.C.  

FHIR is also providing a computational expression for 
consent specification through the FHIR Consent resource. 
This resource is “a record of a healthcare consumer’s 
choices, which permits or denies identified recipient(s) or 
recipient role(s) to perform one or more actions within a 
given policy context, for specific purposes and periods of 
time.” Much of the data elements in FHIR consent resource 
can capture the platform independent policy specification 
presented in section III.B, but the details of this mapping go 
beyond this paper. It is to be noted that there is a strong 
alignment between FHIR Consent resource and the platform 
independent consent specification recently published by 
HL7 International [11], which in part was influenced by the 
consent policy model specified in section III.B of this paper.    

The technical interoperability concerns are supported by 
a flexible open API based architecture. For example, the use 
of FHIR compliant technical infrastructure, most notably 
FHIR servers, with FHIR defined API interfaces, supports 
standard way of exchanging data or composing 
applications, supporting fast deployment and management 
of applications in an open digital health ecosystem. A FHIR 
server can be provided by a vendor that supports GP 
practices, implementing an electronic health record 
repository. This server can be deployed in a cloud 
environment and can also include a separate repository of 
Consent Directives. The security requirements can 
determine whether such repository can be within the tenant 
of the EHR provider or under control of a separate trusted 
party, such as Consent Authority, introduced in Figure 2. 
The use of cloud based FHIR solutions allows integration of 
traditional PMS solutions with broader digital health 

 
1 PMS systems are offered by several vendors in Australia, one of 
which is Best Practice Software [40]. 

ecosystem, including for example with hospitals, in support 
of referrals and discharge, residential aged care facilities, 
allied health and community providers, pharmacy 
organisations and so on. This also includes support for 
building patient-facing portals, through which patients can 
better engage with their GPs, including defining and 
updating their consent rules.   

It is key that FHIR standard provides basis for many 
integration points, but these need to be governed by 
business, information and technical agreements, including 
the security, consent and ethics policies. 

B. Ethics  
In the context of primary care, the following scenarios 

will require a systematic approach to ethics aware design 
and implementation: 

x use of patient personal health information for the 
purpose of secondary research 

x use of analytics and AI based solution to help GPs 
in making better evidence-based decision, 
including the use of Clinical Decision Support  

x third parties’ use of patent information, either 
provider or patient entered, through their portals  

 
In the context of PMS systems, Research Brokers 

facilitate matching of research interests of research 
organisations (ether for clinical research or for statistics-
focused research done by government organisations), with 
the de-identified patient data available from GP practices. 
In this case an EHRProvider is obliged to ensure that the 
data shared with the Brokers are de-identified, although this 
obligation might be delegated to the Broker, if governed by 
a separate partnering agreement. This implementation is 
required to satisfy the privacy protection ethics principles, 
although finer grained controls can be specified by the 
patient themselves.   

The use of Automated Decision Makers by a GP is 
typically in terms of rule-based systems, as in many CDSs, 
some of which have real-time support, although there is an 
increasing interest in the use of analytics and AI systems. In 
this role for example, analytics applications can be used to 
better understand different clinical patterns associated with 
different patient cohorts, and this functionality can be part 
of an internal PMS component, although a separate third-
party can be contracted, making sure that all relevant 
consent and ethics principles  mentioned in section IV.1) are 
satisfied, and by applying the ethics policies, as illustrated 
in IV.2). Another example is the use of AI solutions to guide 
GPs in making faster clinical decision processes, but for a 
scalable use of AI in this context, some of the legal issues 
associated with accountability ethics principle need to be 
addressed as also highlighted in [17].  

VI. DISCUSSION 
The focus of this paper is on the solution approaches for 

scalable AI, with particular focus on the interoperability, 
consent and ethics, of particular relevance for digital health. 
There are other factors that also need to be considered which 
are briefly discussed next. 



One concern is how to deliver quality AI solutions while 
taking into account the computational cost. There need to be 
a balance between obtained AI model accuracy and 
economic, environmental, and social cost of reaching the 
accuracy level, such as for example when preforming 
intensive natural language processing (NLP) applications 
[38]. 

Another concern is looking at scalable management of 
data and models. The former is about the careful collection 
and curation of data sets for use in AI systems, to address 
challenges associated with time consuming, expensive, 
error-prone, and labour-intensive [6] aspects of data 
collection. The latter one is about reusing the models 
developed through training over a specific dataset, but for 
different problem of target domain, one technique of which 
is referred to as transfer learning.   

Further concern is how to understand how an AI system 
operates, or explainable artificial intelligence (XAI). XAI 
refers to a set of techniques available to human users to 
provide them with transparency and trust about the results 
and output created by machine learning, such as with deep 
learning and neural networks. Explainability can help 
developers ensure that the system is working as expected, it 
might be necessary to meet regulatory standards, or it might 
be important in allowing those affected by a decision to 
challenge or change that outcome. Explainable AI is crucial 
for an organization in building trust and confidence when 
putting AI models into production [9]. In general, 
investigating model behaviours through tracking model 
insights on deployment status, fairness, quality and drift is 
essential to scaling AI [9].  

Depending on the complexity of the model, one can use 
‘white box’ models, that are transparent and easily 
interpretable, providing relatively straightforward 
explanation how models provide predictions and what are 
the influencing variables, i.e. how the models behave. For 
example, simple decision trees or ordinary regression with 
a few variables, make it easy to tell how the variables 
combine to form the system’s predictions.  

On the other hand, ‘black box’ models refer to situations 
where simple models are not sufficient to explain a 
particular machine learning activity, making it much more 
difficult, or even impossible, for ordinary humans to 
understand how an algorithm makes a decision. Examples 
are neural networks with many layers or convolutional 
neural networks. In these cases, the explanations of how 
black box models behave are supported by applying a 
second (white box) algorithm, developed to approximate the 
outputs of the black box. This second algorithm is trained 
by fitting the predictions of the black box and not the 
original data and is used to develop post-hoc explanations 
for the black-box outputs and not to make actual 
predictions. 

In spite of their increasing popularity as a research topic, 
there are some challenges in practical use of black box based 
XAI for digital health, as recently discussed in [10], and 
practitioners would need to be aware of these. The authors 
first consider an example of a point scoring system used by 
many doctors for calculating patients’ heart disease or 
stroke risk based on their blood pressure, cholesterol levels, 
age, and other characteristics. This is an interpretable AI, 
providing transparency and helping one understand how a 
model works. It is simple, intuitive, and easy to grasp. Their 

argument however is that, in many medical applications 
where developers need a more complicated ‘black box type’ 
model, there may be certain issues with the correctness of 
explanation. So, in the stroke risk example, the white-box 
explanatory algorithm might tell a patient that their high risk 
of stroke, as it was predicted by the black-box model, is 
consistent with a linear model that relies on their age, blood 
pressure, and smoking behaviour. But it is easy to imagine 
many other explanations that can be generated that are also 
consistent with the black-box prediction. For example, the 
patient’s risk of stroke could also be consistent with a 
decision tree that relies on one’s gender and diabetes status 
instead of blood pressure and smoking status [10].  

These issues associated with imperfection of XAI may 
suggest that in some cases, regulators should consider 
alternative methods for AI product assurance, such as the 
use of clinical trials. This was indeed what the authors 
propose. 

VII. CONCLUSIONS AND FUTURE WORK 
One goal of the paper is to provide guidance to 

practitioners interested in the use of ML/AI in addressing 
specific digital health challenges. Another goal is to offer 
new insights to the ML/AI researchers about broader 
aspects of digital health ecosystem and help them in 
positioning of their AI/ML solutions in such systems. The 
aim here is to stimulate many types of collaboration 
between academic and practitioners, towards developing a 
learning health system. 

Regarding the first goal, the paper has first identified 
relevant interoperability frameworks and standards and then 
proposed a computable policy framework to support 
integrating consent and ethics rules in support of analytics 
and AI in digital health ecosystem. These can be used by 
practitioners as guidance when embarking on building AI 
applications, for discrete use cases or on end-to-end basis.  

We plan to test this framework in several concrete 
analytics or AI projects, and where necessary update these 
for future use. For example, it would be of interest to 
consider how fine grain consent rules can be integrated as 
part of a specific patient management system’s portal, 
allowing patients to define control over their personal health 
information, while the portal still being managed by the 
provider. This would complement current consent solutions 
which are focused on specifying consent for receiving 
communication, such as permitting receipt of pathology 
reports but excluding receipt of advertising emails. A 
related issue is the level of adoption of such expressive 
framework by consumers, which would reflect various 
demographics aspects of consumer, which can be informed 
by recent analysis presented in [41]. 

Regarding the second goal, it would be of value to 
consider how one can get AI to scale within a particular 
healthcare organisation or collaborative structure. One can 
start with reimagining their own business processes, or 
function enabled by AI end to end, and incrementally adopt 
the use of AI, leveraging lessens from previous efforts, 
while making use of the toolbox of enabling technologies 
identified in this paper. 

We also plan to investigate the role of distributed ledgers 
and digital twins, which can provide their own components 
as part of the digital health ecosystem, with links to 
analytics, ML and AI applications. 



In terms of potential future work related to ethics, we are 
interested in investigating tool-based support for relating 
ethics principles into design of digital health systems. This 
could involve the use of existing UML tooling, including 
support for UML for ODP standard [25], but also 
experimenting with broader set of tools and relevant 
formalisms for research purposes, including the use of 
ontologies to represent the ethics concepts discussed in 
section IV.2). One specific topic is investigating how the 
concept of value can be modelled in support for reasoning 
about ethical dilemmas and conflicts. For example, we are 
planning to look at the possible word semantics, based on 
Kripke model, augmented with the concept of utility, as also 
mentioned in the ODP-EL standard [4] . 
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