An open architecture for complex event processing with machine learning

Nhan (Nathan) Tri Luong, Zoran Milosevic'?, Andrew Berry!, Fethi Rabhi®
"Deontik, Australia
Institute for Integrated and Intelligent Systems, Griffith University, Australia
3School of Computer Science and Engineering, University of New South Wales, Australia
{luongtrinhan@gmail.com, zoran@deontik.com, andyb@deontik.com, f.rabhi@unsw.edu.au}

Abstract — This paper proposes an advanced, open
architecture to augment streaming data platforms with both
complex event processing (CEP) and predictive machine
learning models. We leverage the power of CEP to preprocess
streams using sophisticated event pattern expressions then
present these preprocessed streams for downstream training
and predictive computations. We demonstrate this approach
using specific technology components.

Keywords — streaming; real-time analytics; complex event
processing; machine learning; artificial inteligence.

I. INTRODUCTION

The increasing availability of digitally accessible real-
time data sources such as stock market data, news, social
media and IoT systems, and the growing number of data
streaming engines provide a basis for many new real-time
analytics applications. These applications deliver real-time
insights into changes occurring in business or social
environments and enable rapid decision-making.

A data stream is a sequence of data items carrying
information about events, each signifying an occurrence of
an important change in the environment. There are two main
algorithmic challenges when dealing with streaming: (1) the
streams are large and have high velocity, and (2) we need to
match patterns and make predictions incrementally in real-
time. This implies that we often need to accept approximate
solutions in order to use less time and memory.

It is possible to capture event relationships through event
pattern types, specifying logical, temporal or causal
relationships between events. Events can be emitted by
multiple sources and it is often through combining these
sources using sampling, filtering, correlation and
aggregation that new insights can be delivered. For
example, a sequence of events representing price
movements can be correlated with news items coming from
sources like social media to highlight influences on stock
price.

The growing development and sophistication of
machine learning (ML) and artificial intelligence (AI)
provides data-driven inference and learning about activities
in a particular domain. Considerable research in ML and Al
has been centred around accessing, curating and pre-
processing static data sets for model training purposes. For
example, the use of ML and Al can help identify stocks
whose historical trade prices move together in the same
direction, known as pairs trading. This can be extended to
help identify specific trading opportunities in real-time or
select assets during portfolio construction. Processing of
continuously changing data streams for ML purposes
however brings many additional challenges [2].

Continuous learning is the ability of a model to learn
continuously from a stream of data. This requires flexible
architectures to support integration of pre-processing,
training and prediction tasks. This paper provides an open
architecture that supports complex pre-processing using
CEP pattern matching capabilities and integrates it with the
downstream ML and Al functions in a manner that supports
real-time Al prediction and dynamic training.

The next section presents emerging trends and
challenges in integrating streaming analytics with ML and
Al, and presents a generic architecture in support of this.
Section III describes our specific implementation approach,
section IV provides evaluation of our approach and section
V presents conclusions and future directions.

II. INTEGRATING EVENT-BASED STREAMING AND Al

A. Related work

We address two distinct aspects of integrating event-
based streaming and ML/AI solutions:

e Providing a flexible architecture to support multiple
configurations and deployment options, and to
accommodate different real-time analytics use cases.

o Developing streaming algorithms that support machine
learning and prediction tasks on a real-time data stream.

The key related research efforts are summarised next.

1) Architecture aspects

A flexible architecture should accommodate a wide
range of real-time analytics use cases. For example, some
usage scenarios do not require sophisticated CEP
functionality and can be implemented using out-of-the-box
constructs from streaming engines, such as filtering and
simple queries over events made possible by new real-time
analytics engines. Examples are Microsoft Azure Stream
Analytics [10], Amazon Streaming [11] with multiple open
source streaming engines, including Kafka [3], Flume[6],
Spark [7] and Storm[8], and Cloudera streaming analytics
[12], based on Apache Flink [5]. These streaming services
have evolved their ability to support processing of events,
now including basic elements of some earlier complex event
processing (CEP) technologies [1], as also discussed in our
earlier analysis of real-time analytics solutions [14].

There are however only a small number of CEP engines
able to support truly event-based and distributed processing
with minimal latency and rich expressiveness of event
relationships, and with integrated event and temporal
relationships needed for various type of sliding window
applications. At present, the best approach to supporting
CEP functionality over a streaming engine is to provide
separate CEP library components [12] to be used
incrementally if the event-based processing requires more
expressive event pattern semantics. This allows the use of

sophisticated CEP solutions only when they are needed to
add the CEP properties over streaming functionality, while
allowing separate management of various properties
dictated by the specific real-time analytics use cases.

Finally, adding ML capability to streaming platforms is
a very recent development in response to new real-time
predictive requirements. This can for example be
demonstrated by the TensorFlow2 feature to support
interfacing with the Kafka platform [23].

2) Data streaming algorithms

There are many challenges for the development of
advanced algorithms that could support integration of
streaming and CEP processing with ML tasks as discussed
in [2]. These can be grouped in the following categories:
classification, regression, clustering, and frequent pattern
mining. In classification over continuously arriving stream
of data, the problem is to assign a label from a set of nominal
labels to each arriving item, as a function of the other
features of the item. An example of classification is to label
incoming email messages as spam or not spam. Regression
is similar to classification, with the difference that the label
to predict is a numeric value instead of a nominal one. An
example of regression is predicting the value of a stock in
the stock market tomorrow [2]. Classification and
regression are supervised learning tasks because they need
a set of properly labelled examples for training. When
examples are not labelled however, one can use clustering
algorithms to group them in homogeneous clusters, such as
to group user profiles in a website. This is an example of an
unsupervised learning task. Frequent pattern mining
searches for the most relevant patterns within the examples,
such as association between stocks bought together, e.g.
banking and insurance stocks.

There is recent research effort for linking streaming and
predictive analytics [13], through computing various kinds
of forecasts based on a business process event log. The
authors first introduce a static prediction workflow pattern,
which separates the event log into one sub-stream for each
process instance, and then compute a prediction based on
the content of a sliding window of events. They further
develop a predictive learning workflow for computing a
function (i.e. a “learned” function) from previous instances
of the process, which can then be used as a predictor for
future instances. They do this by running an ML algorithm
on a feature vector calculated over a sliding window of
events. Finally, they develop a self-correlated prediction
combining the previous two patterns, with the goal to
compute a prediction on future events based on what has
been learned on past events of the same log.

B. Proposed architecture

Our proposed architecture is based on the ideas of:

e Separating functionality associated with the CEP
solutions from the emerging streaming solutions, which
provide simpler event processing functionality; this
allows for CEP functionality to be managed separately.

e Using pre-processed streaming data coming either from
the streaming engine or from the CEP engine as input
to the machine learning (training) capability.

e Allowing any prediction algorithm (predictor) to be
linked with the machine learning (training) functions.

e Applying the prediction algorithms trained as above to
the real-time, pre-processed data stream.

Dashboard

Server Side

Js
—|__Orchestrator

; 1L 11

[!
T
. ——M*’ *| TensorFlow
i i\ F 1a s k rafka N Predictor WhRM
Fetch StreamProcessor anrs:i,;;W Catch

Figure 1: A specific instance of the architecture

This leads us to a general architecture which integrates
streaming, CEP functionality and ML/AI with the following
components (see Fig. 1):

e Dashboard, which allows a user-friendly interface for
specification of event patterns, e.g. event sequence
types, indicating increase or decrease of stock price and
visualisation of relevant results, such as the extracted
stock movement patterns.

e Fetch which delivers data (events) from external
sources for processing.

e Stream Processor, for simple event processing, e€.g.
filtering, placing events of specific types on different
event channels, possibly to be persisted via specific
messaging topics, keeping persistent store of event
occurrences, that can subsequently be processed for
analytics purposes.

e Catch, which is an event pattern detection component
that processes the events from the Stream Processor
and matches patterns as per CEP rules. This component
applies sophisticated CEP functionality over the events.

e Trainer, which is a ML training component intended to
train models using datasets created incrementally on
the Stream Processor. These datasets consist of either
the data from the raw events received by the Stream
Processor from Fetch or the event pattern instances
matched by Catch. The machine learning model to
which the dataset is supplied is determined by the user.

e Predictor, which uses the trained model produced by
the Trainer, applying it to incoming raw events or
detected event patterns to generate predictions. These
predictions can be assessed by a separate monitoring
component, and the output of these can be used to
update training models to reflect the new statistical
distribution of arriving data for example. This is part of
the continuous learning approach (not shown in the
diagram, but we plan to investigate this in the future).

e Orchestrator, which orchestrates the activities of the
above components and manages the internal state of the
application.

Continuous learning is thus supported by collecting the
event pattern instances detected by the Catch component.
These are then persisted in the messaging layer of the
Stream Processor and can be used as training data sets for
Trainer component. This component can perform retraining
as dictated by the specifics of the application in question.
For example, in the pairs trading scenario identified in
section I, this can be done at the end of the trading day or in
the extreme case, after each trade. We also separate the
functionalities of the Trainer and Predictor to allow the
model to be updated in the background by the Trainer while
the Predictor continues without interruption.

III. IMPLEMENTATION

This general architecture can be used as a template for
many end-to-end real-time analytics and ML scenarios. This
section presents one specific implementation which
leverages many years of our CEP research [15][16] and is
in line with our earlier work in finance [9]. We experiment
with detecting specific stock price patterns in real time, such
as pairs trading scenarios, i.e. when stock prices from
different companies consistently move in the same
direction. This situation can help investors in making
decisions about their stock portfolio. Examples of some
typical stock price patterns are shown in Fig. 2 below.

Key elements of these patterns are gradients of stock
price movement which can be up, down or flat. Each
gradient line segment is defined by the stock prices carried
by quote events. Two or more events in the same direction
form an event sequence pattern (see section II1.D). Fig. 3
depicts how two gradients can be combined.

The specific components of our implementation are:

A. Flask — realises Fetch

We use Flask [19] to integrate a web scraper which visits
the Yahoo finance site and retrieves data every minute,
encodes it in a JSON message and publishes it on a Kafka
topic. Flask allows us to present the Fetch component as an
API service that listens for user input from the Dashboard.

B. Express.js - realises Orchestrator

Express.js [20] allows developers to create server-side
web applications quickly and efficiently. We chose
Express.js because it integrates well with the Socket.io
library [21] that we used in both the Dashboard (React.js)
and the Orchestrator to enable bi-directional
communications between the server and the client, which is
vital to the experience of the users. When the user activates
one of the CEP Display Tiles (see Fig. 4) the Orchestrator
receives a request from the Dashboard then sends
corresponding API requests to both Fetch and Catch to start
the event pattern capture process. The Orchestrator will
keep track of the overall state of the application and handles
all the cleaning up when the user deletes a CEP Display Tile.
It also facilitates the task of starting model training and
deploying a trained model into the Predictor.

C. Kafka — realises Stream Processor

Kafka [3] was selected as a well-designed distributed
streaming engine that presents a stream of events from the
producers (Fetch and Catch). Kafka topics allow
segregation of events of particular types so these events can
be efficiently consumed by other components. Further, as
all events are stored in a reliable manner. they can be

Rectangle / Flag

Ay

Double Bottom

Double Top

Figure 2: Common Stock Patterns

Stock
Price

.

Figure 3: Gradient Event Sequence Visualization

» Time

queried by consumers that need historical data. This is very
helpful for our Trainer component because it needs to train
on past events.

We have two Kafka topics named Catch and Fetch
which receive data from the Catch and the Fetch
components. The Catch topic is consumed by both
Dashboard (to provide real-time visual feedback to the users
when a match happens) and the Trainer/Predictor (to train
and use the ML models). The Fetch topic is consumed by
both Catch (to capture event sequence matches from raw
data) and Trainer/Predictor for the same reason as above.

D. EventSwarm — realises Catch

EventSwarm [4] is a lightweight, in-memory, open
source CEP library supporting data-driven and low-latency
processing, and designed for embedding in applications,
even mobile applications. Key concepts include [4] [9]:

Event type — characterizes a set of events that share par-
ticular properties. Recall that an event captures information
about some occurrences in the real or virtual world.

Event pattern — defines a relationship between events.
Patterns are matched by feeding events through one or more
processing graphs that select matching groups of events.

Triggers and Actions - event processing components are
connected using triggers and actions. Upstream components
offer triggers, downstream components have actions.
Actions are registered against one or more upstream triggers
defining the edges of the processing graph.

EventSet - the core aggregation construct that collects an
arbitrary group of events in an order consistent with time.
An EventSet is agnostic to the underlying event types: e.g.
if the types are tweets, then a filter can be used to make sure
the EventSet only contains tweets.

Window - a bounded EventSet is used to limit the scope
of event pattern matches and control memory usage, based
on time (e.g. a sliding time window) or number of events.

Expressions - describes event patterns to be matched,
which can be either simple (single event) or complex
(multiple events or event relationships). A Complex
Expression is an expression that matches multiple events,
e.g. a for example, a tweet followed by one or more
retweets. There are two key ComplexExpression classes:
ANDEXxpression, satisfied when it collects a set of events
that match the component expressions, and a
SequenceExpression, satisfied when it collects a set of
events that match the component expressions and are
strictly ordered in time (i.e. timestamp(a) < timestamp(b) <
timestamp(c) ...)

Abstractions perform calculations or compute derived
values over an EventSet, e.g a StatisticsAbstraction that
maintains statistics on numeric values extracted from
individual events by a ValueRetriever. Most of the
abstractions, including the StatisticsAbstraction, are
updated incrementally as events flow through.

E. TensorFlow — realises Trainer and Predictor

TensorFlow was selected because it integrates well with
Kafka data streams through the introduction of
KafkaDataset library [23], allowing reading from and
writing to Kafka topics. TensorFlow has a large number of
pre-built libraries that help to build and train ML models
effectively. In this implementation we used TensorFlow to
build a Long Short Term Memory Network (LSTM) model
that is capable of predicting stock prices based on the raw
data coming in from the Kafka component. We also
implemented a Dynamic Time Warping (DTW) algorithm
that calculates the distance between two time series. This
can be used to assist users to develop their own trading
strategy as will be discussed in section IILF.

F. React.js — realises Dashboard

React.js is used because it renders the user interface
efficiently, while encouraging reusability of components.

Fig. 4 shows the overall view of the Dashboard. It is a
tile-based system with two main types of tiles:

1) The Define Tile

The Define Tile allows a user to choose “Analytics Type”
to decide which Display Tile to create. When creating a
Display Tile of type ML (Fig. 5), a user can specify the ML
Type (supervised or unsupervised), a custom name for
convenience, then choose the Data Source that the Training
component can train on. At the time of writing, there are two
main training data sources coming from either Fetch or
Catch components, and this data is captured by the
corresponding Kafka topics.

The Fetch source provides raw events from Yahoo
finance data streams published on the corresponding Kafka
topic (green line between Fetch and Kafka in Fig. 1). The
Catch source publishes event patterns that are captured by
the Catch component on the corresponding Kafka topic (red
line between Catch and Kafka in Fig. 1). A user can select
one of the ML Algorithms provided to experiment with the
ideas. Currently, the platform supports Dynamic Time
Warping (DTW) and Long Short-Term Memory Neural
Network (LSTM). However, adding new algorithms is not
difficult due to the expandability of the architecture.

When creating a Display Tile of type CEP, there are
multiple CEP types which can be chosen using the “CEP
Type” menu, such as the one shown in the bottom-right tile
of Fig. 4, namely the “Sequence of Gradients” CEP type.

[msft] Peak 1

18 A

event patterns detected

Activate Delete

[aapl] Peak 2

event patterns detected

Activate Delete

[Catch] Difference

ANALYTICS TYPE
Sequence Of Gradients
Smbol

Name

CUN—
Gracient | ESENENENEN
Gradient 2 PERINGEN

3.843737008124385

Train Delete Get Dataset

Figure 4: The Dashboard

The Symbol parameter is needed to specify which stock data
to fetch.

Note that Gradient is a special kind of EventSwarm
event sequence which detects a continuously increasing,
decreasing, or unchanged numerical sequence. This simple
gradient pattern is sufficient to explore multiple stock price
patterns no matter how complex they are (Fig. 2). The
composition of gradients comprises a number of individual
gradients that can be chained together using the sequence
editor. These gradients are looking for the opening price of
each stock event. All Gradients are concatenated back-to-
back to each other starting from Gradient 1. Each Gradient
has 3 main parameters: the minimum and maximum length
of the Gradient, and its direction (+1 stands for going up, -1
for going down, and 0 for staying flat). Using Fig. 4 as an
example, the values in the sequence editor correspond to the
visualization graph in Fig. 3, where each event is depicted
using a circle. Circles with the solid outline create a minimal
sequence that can be matched by the specified parameters,
while the maximal sequence includes both solid and dashed
circles.

2) The Display Tile

The ML Display Tile (the bottom-left tile of Fig. 4)
allows users to either start the training process or download
the dataset in csv format. The Trainer pulls data from a
Kafka topic based on the Data Source specified, then
performs the training, after which the trained model is
transferred to the Predictor for predictions on the new
incoming data from the same Data Source. The result is
shown directly on the tile. The example in Fig. 4 shows that
the calculated DTW value is 3.84. Note that the smaller the
distance, the more related these event patterns are, i.e. these
two stocks tend to move in a similar way during this
scenario. Two event patterns are identical when their
distance is 0.

The CEP Display Tile (the top-left tile of Fig. 4) shows
a counter for the number of matches detected. After a tile
activation, raw stock data will flow from Fetch to Catch,
and if a match occurs, Catch sends the matched data to the
Front via Kafka then the counter ticks.

G. Docker environment - managing the components

With a large number of separate components, it is hard
to manage all of their dependencies and to execute them in
in a required order. In order to mitigate this problem, we
packaged each component as a Docker image [22]. Docker
is a good fit for a microservices architecture like ours
because each image maps directly to a component, which
allows faster software delivery cycles and expandability -

Machine Learning
Supervised

Name :

ML ALGO DATA SOURCE

Figure 5: The Define Tile for a ML Display Tile

we can add a new component to the system just by building
another Docker image. Managing a large number of docker
components however is difficult, so we use Docker
Compose, to define and execute the images in a specific
order following our configuration. The application is
available as open source [24].

IV. EVALUATION

We used this architecture to experiment with two stock
price analysis scenarios, described next.

A. Scenario 1

This scenario did not involve CEP functionality, as the
goal was to experiment with the connection of Fetch-
StreamProcessor-Trainer-Predictor chain. The purpose was
performing stock price prediction for a particular company
and for the next trading day. The training algorithm accesses
stock data obtained from Yahoo Finance via the Fetch
component and persisted on a Kafka topic (JSON format).
We considered a number of prediction algorithms and chose
a Long Short-Term Memory (LSTM) Recurrent Neural
Network in Python using TensorFlow 2 and Keras, based on
the approach reported in [17]. We chose LSTM as this has
become a prevailing algorithm for time-series prediction.

A user can create an ML Display Tile using the LSTM
Algorithm, Fetch Source and click the “Train” button. The
Trainer fetches all retrieved stock data from Kafka and starts
the training phase. Once completed, it will show the
prediction of the upcoming stock price based on the history
it examined on the ML Display Tile. The user can re-train
the model at any time to cover a wider range of data, which
is delivered every minute from the Fetch component.

Investors can use this functionality to get the most
informative indicators and make better predictions. They
can use the platform to fetch data from multiple sources and
companies, do ML training in parallel on all the data and get
the result back using one unified platform.

B. Scenario Il

Our second scenario addresses the pairs trading problem
introduced in section 1, allowing the user to experiment
with different parameters and assist them in detecting stock
pairs that tend to move together without being distracted by
all the market noise that makes the stock fluctuate.

In this case all components of architecture are used. The
Catch effectively acts as a filter that captures meaningful
stock patterns that the users are interested in. This filtering
is extremely important since the ML algorithms tend to
perform poorly on data that has a lot of noise. Specifically,
we made use of ANDExpression and SequenceExpression
described in III.LD to pre-process raw data coming from
Fetch before going to the Trainer. The combination of these
two expressions allowed us to capture more meaningful
information which enhances the effectiveness of the
Trainer.

The user can create two different CEP Display Tiles that
specify parameters to capture different stock patterns from
different companies in real-time, e.g. “msft” (Microsoft)
and “aapl” (Apple). All the detected event patterns are
published in Kafka. Once the user is happy with the number
of captured stock patterns, they can create an ML Display
Tile that uses Catch as the data source and DTW as the ML
Algorithm. The decision of when to start the ML Algorithm

depends on the user rather than being fully automated. This
is a good example of the combined actions of users and
algorithms, often referred to as augmented intelligence,
being used to assist humans with the decision making
process. The output of this ML Display Tile is a number
indicating the distance between the two series of event
patterns captured by the previous CEP Display Tiles. This
distance measure indicates how different these series are,
with a distance of 0 indicating that the series are identical
and the distance increasing as the series become less similar.
A screenshot of this scenario is depicted in Fig. 4, in which
the distance between Microsoft and Apple stocks is 3.84.
This means that these two stock prices tended to peak
together during the experiment.

This allows investors to experiment with a number of
different event patterns to reflect investor interests, then use
the system to calculate DTW distance between different
pairs of stocks and determine whether these stocks are
closely related (e.g. they move in a similar way) or not. The
platform also allows the investors to download the training
dataset by using the “Get Dataset” button on ML Display
Tiles. This dataset is very valuable since it has been filtered
through the Catch component and formatted in the popular
csv format. This dataset is considerably more reliable for
ML training than raw data because it only shows relevant
stock patterns specified by the user. The resulting dataset
contains less than a hundred records for each stock symbol
per day compared to half a thousand raw records. Investors
can manually analyse the dataset to make further decisions
or they can import it into other systems for further
investigation. The platform provides a large number of
possible combinations of parameters that the investors can
try until they obtain interesting results.

C. Implementation Remarks

One of the key observations in testing the system is the
significant impact of when and how the retraining is done.
As the data comes every minute from the Fetch, the trained
model produced by the ML component changes every time
the user clicks on the “train” button, and thus the dataset
fetched into the ML component continuously grows larger
over time. By default, the dataset includes everything
retrieved by the Fetch from the beginning up to the current
time. However, a larger dataset does not always improve the
accuracy of the trained model because some older data
might not be relevant to the predictions. Thus we need to
identify an optimal way of determining how often the
retraining should be done (e.g. every hour, or every day etc)
and how much data should be included (e.g. one day, two
days etc). The CEP platform can assist in this through
detecting patterns to trigger retraining and constraining
training datasets through sliding windows. We should also
investigate whether continuous learning solutions are able
to manage this problem algorithmically.

Another observation is that the ML component
consumes significant CPU resources for training. Since the
users are free to retrain the model as often as they want,
doing so repeatedly can consume significant computational
power and may affect the performance of the server cluster.
This can be mitigated by limiting concurrent ML training
processes based on the hardware configuration of the
system or using cloud services for auto-scaling.

Each ML algorithm requires a different format for the
input dataset and needs different types of attributes on each
record of the training dataset. We had to limit each ML
algorithm to perform training on a subset of all attributes
available on the data. An additional component to transform
the data being fetched to match input requirements of each
ML algorithm would be helpful. The CEP component could
be configured for this purpose, but an off-the-shelf tool
optimised for such transformations is likely to be more
efficient.

V. CONCLUSION AND FUTURE WORK

The ultimate objective of this paper is to introduce a
novel architecture that allows users to experiment with
various combination of streaming, CEP and ML capabilities
in real-time. This is achieved through providing a number
of standard software components which can be combined
according to the requirements of a specific use case, which
speeds up the development cycle due to reduced
dependencies and also improves the extensibility of the
system.

We provided a specific realisation of the architecture
using Kafka, TensorFlow 2, and EventSwarm. Our
realisation provides users with a simple and straightforward
interface that hides most of the complexity associated with
the details of streaming, CEP and ML components. It allows
analysts to focus on experimenting and gathering
compelling results in their domain of expertise.

We have shown through our example scenarios that the
inclusion of CEP for pre-processing and pattern matching
extracts higher-level features from the raw data and
provides more information to the ML algorithms to work
on. This enables the trained model to provide new insights
into the data.

This general architecture can be applied to support use
cases in a wide range of domains, such as digital health,
agriculture, climate change, and so on.

Our immediate goal is to further investigate the use of
Kafka topics to support incremental learning. We also plan
to support a larger variety of CEP rules and ML algorithms
so that the users can have access to a more powerful
platform for quick experimentation. During this process, we
will increase the stability of the platform through better
scaling and management of resources used in training
processes. On a longer time horizon, we plan to automate
some of the user choices related to ML technique selection
and fine-tuning by integrating addition external components
for data profiling, transformation and mining. This will
enable more complex ML techniques (e.g. Deep Learning)
to be deployed with EPS technology automatically applying
complex data transformations as required by these

techniques. This can be enhanced by offering the
opportunity to perform continuous learning via automatic
parameter-tuning based on analysing the results and user
feedback.

REFERENCES
[1] Real Time Intelligence & Complex Event
https://complexevents.com (accessed 27 Apr 20)

[2] A. Bifet, R. Gavalda, G. Holmes and B. Pfahringer Machine
Learning for Data Streams, with Practical Examples in MOA, MIT
Press, 2018.

Apache Kafka, https://katka.apache.org (accessed 27 Apr 20)

Processing,

(3]

[4] EventSwarm, https:/github.com/eventswarm (accessed 27 Apr 20)
[5]1 Apache Flink, https:/flink.apache.org (accessed 27 Apr 20)

[6] Apache Flume, https:/flume.apache.org (accessed 27 Apr 20)

[71 Apache Spark, https://spark.apache.org (accessed 27 Apr 20)

[8] Apache Storm, http://storm.apache.org (accessed 27 Apr 20)

[9]

Z. Milosevic, W. Chen, A. Berry, F. A. Rabhi, An open architecture
for event-based analytics, International Journal of Data Science and
Analytics 2 (1-2), 13-27

[10] Azure Streaming Analytics, https://azure.microsoft.com/en-
au/services/stream-analytics/, (accessed 27 Apr 20)

[11] Amazon Streaming, https://aws.amazon.com/streaming-data/,
(accessed 27 Apr 20)

[12] Cloudera Streaming analytics, https://docs.cloudera.com/csa,
(accessed 27 Apr 20)

[13] M. Roudjane, D. Rebaine, R. Khoury and S. Hallé, "Predictive
Analytics for Event Stream Processing," EDOC2019 Conference
(EDOC), Paris, France, 2019, pp. 171-182.

[14] Z.Milosevic, W. Chen, A. Berry, F. A. Rabhi, Real-Time Analytics,
in Big Data: Principles and Paradigms. Morgan Kaufmann/Elsevier,
2016.

[15] A. Berry, Z. Milosevic, Extending choreography with business
contract constraints, IJCIS 14 (02n03), 131-179

[16] A. Berry, Z. Milosevic, Real-time analytics for legacy data streams
in health: monitoring health data quality, EDOC2013 Conference,
Vancouver, Canada, 2013.

[17] How to Predict Stock Prices in Python using TensorFlow 2 and
Keras, https://www.thepythoncode.com/article/stock-price-
prediction-in-python-using-tensorflow-2-and-keras (accessed 15
May 20)

[18] Yahoo Finance, https://finance.yahoo.com/ (accessed 01 May 20)

[19] Flask, https://flask.palletsprojects.com/en/1.1.x/ (accessed 01 May
20)

[20] Express.js, https://expressjs.com/ (accessed 01 May 20)

[21] Socket.io, https://socket.io/ (accessed 01 May 20)

[22] Docker, https://www.docker.com/ (accessed 01 May 20)

[23] TensorFlow Kafka Dataset docuemntation

https://www.tensorflow.org/io/api_docs/python/tfio/katka/KafkaDa

taset

[24] Stockswarm, https://gitlab.com/Treenhan/stockswarm (accessed 05
May 20)

