
 1

A General Resource Discovery System
for Open Distributed Processing

Qinzheng Kong and Andrew Berry

DSTC Pty Ltd,
The University of Queensland,

Australia, 4072
<qin@dstc.edu.au>, <berry@dstc.edu.au>

Abstract

The networks of today support a wealth of resources which can aid the
daily tasks of a diverse user base. Resource discovery is a relatively
new field that deals with the problems of finding, organising and
accessing these resources in a global network. The architecture model
proposed by the DSTC’s Architecture Unit provides a way to specify
open distributed application systems. A resource discovery system is an
example of such an application. This paper uses the DSTC architecture
model to specify a general resource discovery system.

1 Introduction

The distributed systems of today support a wealth of resources which can aid the daily tasks of a
diverse user base, ranging from school children to business professionals. The types of resources
available include network services, documents, software, video, sounds and images. Resource
discovery is a relatively new field that deals with the problems of finding, organising and
accessing these resources in an open distributed system.

The Architecture Model [1] proposed by the DSTC’s Architecture Unit provides a way to specify
open, distributed application systems. A resource discovery system in a distributed environment
is an example of such an application. This paper uses the DSTC Architecture Model to specify the
architecture of a general Resource Discovery System.

In the remainder of the document, section 2 gives a brief description of the concepts defined in the
DSTC Architecture Model. Section 3 gives a general architecture for resource discovery systems.
Sections 4 and 5 describe how the concepts defined in the architecture model can be used to
specify a general resource discovery system. Section 6 describes some fundamental requirements
of a distributed environment for general distributed applications. Finally, section 7 discusses
future research directions in the distributed resource discovery system area.

2 Basic Concepts of the Architecture Model

Distributed applications in the DSTC architecture model are specified in terms of objects, their
interface types and bindings between the interfaces of objects.

 2

2.1 Objects

In the DSTC architecture model, an object is an entity that encapsulates state, behaviour and
activity (i.e. the ability to take independent action). Objects interact by exchanging strongly typed
messages over a binding. Objects connect to a binding through their interfaces.

2.2 Bindings

A binding is a association between a set of objects that allows the objects to interact. Bindings are
strongly typed—the binding type defines the roles of objects in a binding and the interaction that
can occur between objects fulfilling those roles.

Roles of a binding are filled by the objects participating in the binding. For example, a binding to
support RPCs must have a “client” role and a “server” role. Each role of a binding specifies an
interface type that must be satisfied by objects fulfilling that role—objects participating in the
binding must therefore instantiate an interface that is a compatible with their role in the binding.

The fundamental unit of interaction in a binding is a single, strongly typed message, although
more complex, high-level interactions can be defined, for example, RPC or multicast.

2.3 Interfaces

An interface is instantiated to fulfil the role of an object in a particular binding. Interfaces are
strongly typed—an interface type describes the possible the structure and semantics for
interactions of an object during a binding. In other words, an interface type describes the structure
of messages and the object behaviour associated with messages sent and received by that object
during a binding.

An object can offer many interface types and the set of interface types offered can vary over time.

3 An Architecture for General Resource Discovery Systems

A resource discovery system in a distributed environment consists of many sites. Each site can be
described as having aServer and one or moreClients.

TheServer is responsible for accessing local resources, communicating with other remote servers
to access their resources, and providing common services required by its clients. TheClient
provides a mechanism for users to discover and access resources. TheClient can be further
decomposed into two major components: aUser part which provides an interface specifically
designed for the end-user environment; and anAgent part, which provides user specific services
and communicates with the local server.

Each server can support more than one agent and each agent can support more than one user.

 3

The architecture of such a system is illustrated in figure 1:

Figure 1. General Architecture of Resource Discovery System

Each local system can be refined as in figure 2:

Figure 2. An example of a local system

4 The Specification of a General Resource Discovery System

As mentioned before, a resource discovery system in a distributed environment is only a
particular case of a general distributed application. The DSTC architecture model can be used to
specify a general resource discovery system.

The first step of specifying a distributed system using the model is to identify a set of basic
Objects. Based on the architecture described in section 3, there are three top level objects: aUser
anAgent and aServer.

The second step is to describe the interactions between these objects with a set ofBinding Types.
In our example of resource discovery system, three binding types are required,User-Agent
Binding Type, Agent-Server Binding Type andServer-Server Binding Type. These binding types
define the communication and interaction protocols used to support resource discovery.

User

Agent

User

Agent

User

Agent

Server

ServerServer

A local system

Distributed Environment

Communication
Protocol

User

Agent

Server

User
User

User User

Agent

 4

From the binding types, we can identify and derive a set ofInterface Types to be supported by
these objects.

The interface types supported by theUser object areEnd-user Interface Type andAgent-request
Interface Type. TheEnd-user Interface Type is used to specify the end-user interface, which might
be a GUI interface. TheAgent-request Interface Type defines the interactions aUser can expect to
have with anAgent.

The interface types supported by theAgent object are theAgent-service Interface Type and
Resource-user Interface Type. The Agent-service Interface Type is used to specify the local
services provided to clients of the agent and the parameters required for those services. The
Resource-user Interface Type defines the interactions anAgent can expect to have with aServer.

The Server object supports two interface types,Resource-service Interface Type and Remote-
service Interface Type. The Resource-service Interface Type is used to specify the services
provided to anAgent, and theRemote-service Interface Type is used to specify the interactions
that aServer can expect to have with other servers.

The relationship between the objects, interface type and binding types of a Resource Discovery
System is illustrated in figure 3:

Figure 3. Object, Interface Types and Binding Types

Notice that separate interfaces are defined for theUser and theAgent in theUser-Agent binding
type and similar separations in the other binding types. This is to allow for differences in what the
user expects, and what the agent provides. An agent might be accessed by more than one user, and
each user can have different expectations. Provided the expectations of the user are a subtype of
the service provided by the agent, a binding between the user and agent is meaningful.

The following sub-sections describe the binding types in more detail. Detailed interface types are
not described, to allow maximum flexibility in the definition of systems based on this architecture.

User

Agent

Interface Types

End-user (GUI) Interface Type

Agent-service I/F Type

Resource-service I/F Type

Binding Types

User -Agent Binding Type
User role
Agent Role

Agent-Server Binding Type
Agent Role
Server Role

Server-Server Binding Type
A set of Server Roles

Basic Objects

Agent-request I/F Type

Resource-user I/F Type

Server

Remote-service I/F Type

 5

4.1 User-Agent Binding Type

The User-Agent Binding Type specifies the possible interactions between the user and the agent
objects. It has two roles,user andagent. A number of interactions can take place between a user
and an agent. For example, the user can issue a request that is delivered to the agent, and it should
always be followed by a response from the agent delivered to the user. (The handling of the
request is a local issue of the agent and is not discussed here.) Another example of the interaction
might be that the agent can issue a message to a number of users when a certain event occurred.

This binding type can be expressed using an arbitrary syntax as follows:

User-Agent Binding type
Roles are: user, agent
Interactions are:

query: user.request -> agent.request;
agent.response -> user.response

message: agent.sending -> user.receiving

As mentioned before, a binding type can be used to derive minimal interface types required for
different roles. Each action taken by different roles should be specified as an action in the
corresponding interface type. For example, theAgent-request Interface Type must support the
action of sending requests and theAgent-service Interface Type must support the action of
sending responses.

The binding type for a general resource discovery system specified above can be used as the basis
for defining binding types in a specific system. A binding type for a system (RDS) based on
Z39.50 [6], could be based on the general binding type as demonstrated below:

RDS-User-Agent Binding Type
Derived from User-Agent Binding Type

Roles are: user, agent
user has RDS User-Agent Interface using Z39.50
agent has RDS Agent Interface using Z39.50

Interactions are:
query:init:
query:search:... ...
query:present:... ...
query:delete:... ...
query:scan:
query:sort:
... ...
segment:
... ...

In which, theinit, search, etc. are specific queries derived from thequery of the generalUser-
Agent Binding Type andsegment is a new interaction. Detailed descriptions of each interaction
can be specified but are not given in this paper.

4.2 Agent-Server Binding Type

TheAgent-Server Binding Type may be expressed as:

 6

Agent-Server Binding Type
Roles are: agent, server
Interactions are:

query:
service:
message:

It has the similar form as theUser-Agent Binding Type. When the server object is refined to
capture more detailed services supported by the server (See “Refinement of Top Level Objects”
on page 8.), the binding type will have more details.

4.3 Server-Server Binding Type

The binding type for interaction between servers is more complicated. The binding type can be
specified either as a multi-party binding with many servers, or a set of 2-party bindings between
servers.

In the case of multi-party binding, an instance of a binding type is a single binding which contains
two or more servers. Each server in the binding has an equivalent role (i.e they are peers). Servers
can choose to join and leave existing bindings. The following figure illustrates a multi-party
binding:

Figure 4. Multi-Party Binding Type

The Multi-Party Binding Type is often required in a real distributed system. A key problem of
such a binding type is to define the policy of finding, then joining and leaving a binding. In a
distributed environment, it might not be possible to have a centralised system to keep the
information of all the existing bindings, so the policy should include how to find existing bindings
in a distributed environment.

It is assumed that when a server wishes to join a binding, it should have the knowledge of at least
one server which is already in the binding. With a join request, a set of conditions can be
specified. When the server in the binding receives the join request, it is its responsibility to notify
all the servers already in the binding that a new server has joined. If the server which receives the
join request is a stand-alone server (not in any existing binding) then a new instance of the
binding type is created which contains only two servers initially.

TheMulti-Party Binding Type can be expressed as:

Multi-Party Server Binding Type

Remote
Server

Remote
Server

Local
Server

Remote
Server

 7

Roles are: servset - a set of servers
Interactions are:

query: ∃s:servset,
 s.sending -> ∀r:servset-{s}: r.receive;
∀r:servset-{s},
 r.response -> s.response

join: ∃s1:servset, s2: server,
 s1.join(s2) -> ∀r:servset-{s1}:r.newserv(s2)

leave: ∃s: servset,
 s.leave(s2) -> ∀r:servset-{s}:r.leaving(s2)

... ...

A number of interactions can be added to the above specification, such as, combine two existing
bindings, create a new binding, etc.

In the case of2-Party Binding Type, each binding contains only two servers, one is referred as
Local Server and the other asRemote Server. The following figure illustrates2-Party bindings.

Figure 5. Peer-To-Peer Bindings

Each binding instance in the above figure is a simple binding between a pair of servers. Although
several servers are connected through indirectly by thelocal server, there are no direct bindings
between these servers. If direct interactions between all servers are required, specific bindings
have to be set up.

The 2-Party Binding Type can be expressed as:

2-Party Server Binding Type
Roles are: server1, server2
Interactions are:

query: s:server1 or server2, r: not s,
s.sending -> r.receive

r.response -> s.response
create: s:server1 or server2, r: not s,

s.create -> r.create
delete: s:server1 or server 2, r: not s,

s.delete -> r.delete
... ...

Remote
Server-1

Remote
Server-2

Remote
Server-3

Local
Server

binding-3

binding-2

binding-1

 8

It is possible that within one system, both the multi-party binding and the 2-party binding are used
at the same time. From the descriptions above, it is apparent that multi-party bindings provide
significantly more flexibility in describing the interactions at the expense of complexity.

5 Refinement of Top Level Objects

The top level objects of the general resource discovery system only give an abstract view of the
system. These objects can be refined to capture additional detail. For example, apart from normal
query access, an agent object can provide some intelligent services. An example of intelligent
agent service might be to register the interests of a user whenever that user issues a request. This
data can be used by the agent to intelligently gather information for delivery to the user.

Another example of an additional service might for the server and the agents to provide an
administrative interface for configuration and administration.

Hence, based on these object refinements, more binding types are required which can either be
derived from existing binding types or be newly defined types. Some examples of these binding
types are given in the following sections.

5.1 Intelligent Agent Binding Type

The intelligent agent binding type can be derived from the generalUser-Agent Binding Type with
an extra operation performed by the agent to register user’s interests:

Intelligent-Agent Binding type
Derived from User-Agent Binding Type
Roles are: user, agent
Interactions are:

query: user.request -> agent.request and
agent.register;

agent.response -> user.response
notify: agent.notify -> user.notify

5.2 Admin-Server Binding Type

An administrator is a special user to the system. Apart from normal access through local agent
interface, the administrator might have direct access to the Server for administration. A new
binding type is required to capture these abilities.

A template ofAdmin-Server Binding Type can be given as:

Admin-Server Binding type
roles are: admin, sever
interactions are:

insert:
delete:
update:
backup:
verify:
security:
management:
... ...

 9

5.3 Refinement of the Server

The refinement of the server object can be achieved by specifying a set ofService objects
embedded in theServer object. That is, each service provided by the server can be defined as an
object. For a general resource discovery system, the following service objects might be defined:

• Security Service Object—This performs the service level security checking, including the
checking of access made by local users or remote servers.

• Directory Service Object—This provides the X.500 Directory Services. The information in
the directory may include the information about other servers in the system and information
about existing Bindings.

• Trader Object—This provides a “yellow pages” service, for example, an ODP Trader [2].
Such an object could be an optional object.

• Type Management Object—This object provides a service to determine the compatibility of
types [5]. This could also be an optional object.

• Local Database Management Service—This might be any kind of persistent data storage
management system. This service may be used by other Service objects such as the
Directory Service objects, the Type Management objects and the Trader objects.

• Accounting Service Object—This provides resource control service for the user.

• Logging Service Object—This object records events of interest. A general logging service
can be used for many different purposes, e.g. security logging, search event logging, etc.

Some of the above services may be defined as common services (e.g. theAccounting Service, the
Logging Service and theSecurity Service) shared with other applications running on the same
node. Other services might be specific to the resource discovery system. Each of these services
can be specified as an object. Figure 6 illustrates the relationship between these service objects.
Different interface types and binding types among these objects are also illustrated:

Figure 6. Service Objects and the Binding Types

TypeDS

LoggingAccounting

Trader LDBMSecurity

Server

Security Binding
DS Binding

Type Mgmt Binding
Trader Binding

Local DB Binding

Other Bindings

 10

6 Distributed Environment

Ideally, a resource discovery system would be built on top of a standard distributed environment.
Such an environment must provide location transparency and protocol independence. Each
component of the resource discovery service can be defined as services supported by the
distributed environment and can be dynamically added in the environment when needed. The
abstract view of such an environment is illustrated in the following figure:

Figure 7. Resource Discovery Services in a Distributed Environment

It can be seen from figure 6 that the resource discovery services can be built together with many
other distributed applications in a sufficiently rich distributed environment.

7 Discussions

A brief specification of a general resource discovery system using the DSTC Architecture Model
has been given. It demonstrated that a resource discovery system is only a special example of a
distributed application, and it can be built on top of an open distributed environment with other
distributed applications.

Further refinement of this specification of a general resource discovery system will include the
following tasks:

• Each binding type will be refined in order to capture all the possible interactions between
different roles.

• Interactions in each binding type will be refined to specify the details of the actions and to
give the allowed parameters in each action

• More detailed interface types will be derived from the binding types.

• Formal specification languages, such as LOTOS and/or Object-Z should be used to give
more accurate definition of the objects, interface types and binding types.

Distributed Environment

Z39.50 X.500

Trading Security

Intelligent XXX

Search

HTTP

YYY

Services

Environment

Underlying
Protocol

 11

Acknowledgements

Thanks to numerous research staff of the DSTC Resource Discovery Unit, the DSTC Architecture
Unit and the University of Queensland Computer Science Department for useful discussions and
suggestions. The work reported in this paper is funded in part by the Cooperative Research
Centres Program through the department of the Prime Minister and the Cabinet of the
Commonwealth Government of Australia.

References

[1] A. Berry and K. Raymond,The A1✓ Architecture Model, submitted to International
Conference on Open Distributed Processing (ICODP) 1995.

[2] ISO/IEC JTC1/SC21:ODP Trader, 1994.

[3] M. Bearman,ODP-Trader, Proceedings of the International Conference on Open
Distributed Processing 93 (ICODP’93), Berlin, September 1993.

[4] ISO/IEC JTC1/SC21,Draft Recommendation X.903: Basic Reference Model of Open
Distributed Processing - Part 3: Prescriptive Model (ISO/IEC DIS 10746-3.1),
February, 1994.

[5] J. Indulska, M. Bearman and K. Raymond,A Type Management System for an ODP
Trader, Proceedings of the International Conference on Open Distributed Processing
93 (ICODP’93), Berlin, September 1993.

[6] ANSI/NISO Z39.50-1994 Information Retrieval: Application Service Definition and
Protocol Specification, Draft 1994.

