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Abstract
In this paper we outline a semantic model for open

distributed systems which provides a foundation for a
corresponding architecture description language. This
semantic model is based on architecture models reported
in [2][5], with a number of refinements to support
abstraction and composition. The model is specifically
designed to describe open distributed systems independent
of implementation details such as communication
protocols and middleware systems. The modelling
concepts in the semantic model are: object (a model of an
entity), event (a unit of interaction between an object and
its environment), event relationship (a specification of
behaviour defining the relationships amongst a set of
events), interface (an abstraction of an object’s interaction
with its environment) and binding (a context for
interaction between objects). The binding concept is
particularly important because it can describe any kind of
interaction in an open distributed system, ranging from
remote procedure calls and multicast to more complex,
enterprise interactions.

Special attention is given to the problem of composition
and abstraction of events and behaviour in the model. This
is needed to reflect the reuse, evolution and interworking
requirements of open distributed systems. Our approach
allows for the effective modelling of asynchrony,
concurrency and complex flows of information in open
distributed systems.

1 Introduction

The evolution of middleware products over recent
years and the new capabilities of emerging technologies
(e.g. multimedia, WWW and Java) suggest several key
issues that will contribute to the success of open distrib-
uted systems. First, an open distributed system architec-
ture model should be powerful enough to model both
current and future technologies, in particular the behaviour

of objects, their complex interactions and different
abstraction and composition mechanisms. Second, the pre-
cise semantics of the architectural concepts should be
reflected in a corresponding architecture description lan-
guage.

In this paper we describe a semantic model that pro-
vides a foundation for architecture description languages
in open distributed systems. The semantic model includes
powerful composition and abstraction mechanisms, and is
intended to be independent of detail such as communica-
tions media, network protocols, middleware systems and
implementation paradigms.

Our semantic model is aimed at formalising and refin-
ing the concepts previously defined in the DSTC Architec-
ture Model [2]. The DSTC Architecture Model defines a
set of high-level concepts that encapsulate the require-
ments of open distributed systems, while maintaining a
correspondence with lower-level infrastructure. This
architecture model was developed both to serve the needs
of a diverse organisation engaged in distributed systems
research, and to fuel participation in the ISO ODP[5]
standardisation process. The semantic model described in
this paper is the next step towards an architecture descrip-
tion language for open distributed systems, i.e. architec-
ture model➝ semantic model➝ language.

Such a language will allow the designer to specify the
architecture of a distributed system using design abstrac-
tion and refinement techniques, and lead to support for
truly composable distributed systems. The ultimate goal is
a practical language with a sound formal basis, and tools
that support rapid prototyping and software engineering
activities associated with open distributed systems.

1.1  Describing object interactions

The event relationship is the central concept in our
model for the description of behaviour (the notion of
behaviour in our model corresponds to a ‘real world’ con-
cept—it should not be equated with its use in process alge-



bras). A complete specification of an event relationship
consists of a set of events, an ordering of the events, the
relationships of their parameters, and the events’ timing
constraints.

An interaction implies event ordering and we introduce
a rich set of operators to construct different kinds ofevent
orderings as they are required for open distributed sys-
tems.

The causal ordering of events is necessary but not suffi-
cient to describe all properties of events in open distrib-
uted systems. Distributed systems essentially provide a
conduit for the flow of information between physically
distributed objects. This flow of information is supported
in our semantic model by defining of arbitrary relation-
ships between parameters of events. This gives the seman-
tic model considerable expressiveness and enables the
specification of many useful transformations. For exam-
ple, it is possible to describe the correspondence between
events occurring in different middleware platforms (e.g.
CORBA and DCE), or the events associated with legacy
and emerging platforms. This novel aspect of our work is
of particular importance for open distributed systems.

We recognise that, in spite of the inherent difficulty of
representing time in distributed systems, time constraints
are important for many applications. We therefore provide
facilities for the definition oftemporal relationships.

Another novel aspect of our approach is enabling speci-
fication of the relationships between events in different
abstractions. We recognise that it is useful to describe
architectures in different abstractions, as opposed to the
relevant formal description techniques [9][4][3], which
focus on the specification of behaviour in a single abstrac-
tion and assume the atomicity of events. We allow an
event in one abstraction to be a composition of events in
another abstraction, and define an abstraction semantic
with its associated consistency constraints. The support for
abstraction means that, in general, events are non-atomic,
and we introduce operators to deal with this added com-
plexity.

Since the effective reuse of objects can involve various
forms ofcomposition mechanisms, we introduce a rich set
of operators to support composition. The introduction of
the operators for describing composition and abstraction
further enhance the expressiveness and flexibility of the
semantic model.

1.2  Interfaces and binding

In addition to the interactions, event relationships are
used to describe the semantics of basic modelling concepts
in our model, the interfaces and bindings. Aninterface is a
particular abstraction of an object’s behaviour, and is
described by an event relationship for the events that may
occur at the interface. Abinding is introduced to specify

interactions between events occurring at the interfaces of
different objects. Interfaces and bindings provide structur-
ing and encapsulation, and define an environment for exe-
cution of behaviour described by event relationships.

1.3  Asynchrony

The goal of our semantic model is to enable concise
and flexible specification of distributed object interaction.
Systems built through interconnection of distributed
objects can only be asynchronous, since there is always a
measurable time between the occurrence of an event at
one location and the occurrence of a causally related event
at a different location. To make our specifications concise,
it is sensible for our semantic model to reflect this reality,
thus our model is based on an assumption of asynchrony.
We recognise the difficulties of analysing and reasoning
about asynchronous systems, but feel that the advantages
outweigh the disadvantages. We note that synchronous
behaviour can be modelled in an asynchronous environ-
ment.

The remainder of this paper is organized as follows:
The next section introduces the semantics of our core
behavioural concepts and operators. Section 3 concen-
trates on the definition of interfaces, bindings and their
compos i t ion ,  i l lus t ra ted w i th  an example  o f  a
multicast_RPC binding. Section 4 discusses our work and
section 5 compares it with related work. Conclusions and
future work directions are given in section 6.

2 Specification of Behaviour

We begin by introducing definitions needed in the
description of behaviour. These are mostly based on those
in RM-ODP[5]:

• Type: For any domain of instances, values or entities,
we can define predicates that match some or all ele-
ments of the domain. These predicates are called types.
Note that using this definition, all entities can have a
type, including events, event relationships, event
parameters (i.e. data), objects and interfaces.

• Location: This can be of three kinds. A physical loca-
tion is an interval in physical space [5]. A logical loca-
tion is an interval in some logical space or spaces that
is relevant to the model. For example, a network
address and port number, or (in UNIX) a process id
and virtual memory address constitute logical loca-
tions. A temporal location is an interval in time[5]. An
instant is a point in time.

• Object: An object represents some physical or abstract
entity in the system being modelled. An object has an
identity in the context of the model. An object is



assumed to have a boundary that separates the object
from its environment; i.e. the rest of the system. Exam-
ples of boundaries include physical boundaries,
address space boundaries, boundaries between soft-
ware layers and the notional “abstraction boundary”
for software objects. An object is assumed to be encap-
sulated; i.e. any state changes for an object occur only
as a result of a purely internal occurrence or an occur-
rence at the object’s boundary that is explicitly mod-
elled.

2.1  Core behavioural concepts

We first define the concept of an event and then
describe event relationships in terms of event ordering,
event parameters relationships and temporal relationships.

2.1.1  Events.An event is a unit of interaction between an
object and its environment. Events are not necessarily
atomic and may be decomposed into a set of events in a
lower-level abstraction. Events notionally occur at the
boundary of an object and at a particular temporal loca-
tion. Each event has a (possibly empty) set of parameters.
Each parameter in an event has a value which must be
transmissible and which is immutable in the context of the
event. Events also have a direction relative to the a bound-
ary of an object; i.e. eitherin or out. Parameters of anin
event are bound to a value by the environment and param-
eters of an outevent are bound by the object.

Formally, an event is described by the tuple<name, dir,
loc, P> where

• name is the denotable name of the event;

• dir ∈ {in, out} is the direction of the event;

• loc is the location of the event;

• P is a set of event parameters, each described by a
tuple<name, type, value>.
In this paper, we denote events in the forme!(a,b)

wheree is the event name,! or ? denote an outgoing or
incoming event respectively, anda,b are the event parame-
ter names. Location and the additional parameter details
are typically omitted for brevity. Once an event has been
introduced, it is denoted in subsequent use by the event
name alone. We use the notatione.n to denote the parame-
ter namedn of evente.

2.1.2  Event ordering.As stated previously, an important
part of an event relationship specification is an event
ordering specification. This can be produced by applying
event ordering operators to a set of events. An event order-
ing is a relation defining the causal dependence or inde-
pendence of a pair of events.

Our model provides the following event ordering oper-
ators:

• Causality, denoteda ➝ b: an eventa causally affects
eventb. This operator is introduced to capture “cause-
effect” relations between events. This operator is anti-
symmetric and transitive

• Independence, denoteda �|| b: eventsa andb are caus-
ally independent. Formally:

(a �|| b)⇔ ¬ (a➝ b) ∧ ¬(b ➝ a)
This is introduced to explicitly specify that there is no
causal relationship between two events (this operator is
similar to ||| operator in LOTOS). This operator is sym-
metric and non-transitive.
The notion of causality and the resulting partial order is

used in defining consistency constraints related to event
parameters and timing. Note that the sequential “happened
before” relation used in process algebras is insufficient
because of the underlying interleaved concurrency model
that implicitly relates events with no causal relationship.

Events that are not explicitly or transitively related by
an ordering specification are causally independent.
Although this means the || operator is redundant in a com-
plete specification, the operator is required for detection of
conflicts between composed specifications.

2.1.3  Event parameters.Event parameter relationships
describe relationships between the parameters of causally
related events. In general, an event parameter relationship
can specify any relationship between event parameters. To
make this semantic tractable, we use the binding context to
constrain both the visibility of events and the range of
relationships that can be specified. In a binding context, an
information flow specification has the following seman-
tics:

An event parameter relationship describes the rela-
tionships between the parameters of causally related
events visible in the current binding. Relationships
between the types of event parameters must be well
defined in the binding context.

Consider the following example:

e!(x:DCEint)➝ f?(x:CORBAint)∧ e.x = f.x

This specifies that the output evente causes an input
eventf, and that their single parameters are related by the
=  relationship. For this to be a valid specification, it must
occur in a binding that defines an equality (=) relationship
between the data typesDCEint andCORBAint.Although
this example uses an equality relationship, values can have
arbitrary relationships restricted only by the relationship
definitions accessible in the binding context.

In this definition, we free ourselves from the need to
specify a data type system, since it is defined by the bind-
ing context. This semantic allows us to describe middle-
ware that is largely independent of the type system used
for transferring information. Such middleware could, for



example, support bindings that connect a CORBA client
with a DCE server, provided appropriate equality relation-
ships are defined between the CORBA and DCE type sys-
tems in the binding context.

Note also that there is no reason why a binding context
cannot provide the means for defining new relationships,
allowing application-specific relationships to be defined.
This is of particular use in legacy systems, since the rela-
tionships between parameters output by one legacy appli-
cation and input by another are specific to the applications.

There are many situations where the behaviour associ-
ated with a high-level binding description can be largely
independent of the actual types of parameters to events. In
particular, the positional or name equivalence of parame-
ters to complementary events is very commonly used (e.g.
both DCE and CORBA RPC). To simplify the specifica-
tion of these relationships, we predefine name equivalence
operator ‘*=’  for complementary events as follows:

e! ➝ f? ⇒(e *= f) := ∀f.n : ∃e.n: f.n = e.n

This operator specifies that all parameters of the input
eventf have an equivalence relationship with the parame-
ter of a causally preceding evente having the same name
n. Positional equivalence is an application of this operator
in systems where parameters are named by sequentially
increasing numbers. Note that correct behaviour depends
on the equality relationship=  being defined for the types
of all corresponding parameters, and the names of parame-
ters to eventf being a subset of those in evente.

Although parameter relationships imply causality,
causal relationships can exist without parameter relation-
ships. Parameter relationships cannot, however, exist with-
out a causal relationship. As a result, we require the
explicit specification of causal relationships, although a
language implementation might infer causal relationships
from parameter relationships.

2.1.4  Event timing.An event relationship may include
conditional constraints on the start and end times of events
using these functions and the relationships such as equal,
less than, greater than, and so on as normally defined for
numeric values.

Time specifications support the expression of temporal
constraints that cannot be modelled with partial ordering.
To support expression of time properties, we define two
functions:i) Start(event), which returns the initiation time
of an event, and ii) End(event), which returns time of
event termination. Both of these times are non-negative
numbers and the values returned are accurate within some
bounds. The correctness of a binding with respect to its
timing relationships can only be determined when the
accuracy bounds are known. These bounds will typically
be defined by the system in which a specification is exe-
cuted.

2.2  Composition

The transitivity of the causality operator➝ provides
basic composition of event relationships, but is limited by
its asymmetry (i.e. the same event cannot occur more than
once in partial ordering specification). Since the independ-
ence operator || is non-transitive, it serves no use in com-
posing event relationships. In order to support more
complex composition, additional operators are required.
This subsection defines a set of operators for composition
of event relationships. Note that at present, no iteration
operator is defined. Iteration will be added when the lan-
guage requirements become clearer.

2.2.1  AND.The AND of two event relationship specifica-
tions, denoted “∧”, is the logical AND of their ordering,
parameter and timing relationship specifications. Events,
denoted by their event name, may appear on both sides of
the operator, e.g.a➝b ∧ a➝c specifies thata causally pre-
cedes bothb andc. The operator is symmetric.

2.2.2  OR.The OR of two event relationship specifica-
tions, denoted “∨”, specifies that one or both of the behav-
iours may be chosen. As with logical AND, events may
appear on both sides of the operator, e.g.a➝b ∨ a➝c
specifies thata causally precedesb or causally precedesc
or both. The operator is symmetric.

2.2.3  Exclusive OR.The exclusive OR of two event rela-
tionships specifications, denoted “|”, specifies that one of
the behaviours may be chosen, but not both. This is equiv-
alent to the choice operator of process algebras. The oper-
ator is symmetric.

2.2.4  Subset choice.Subset choice, denoted [<c>]{<E1,
E2,..., En} specifies that a (possibly empty) subset of the
listed event relationships may be chosen, subject to the
optional cardinality constraint <c>. A cardinality con-
straint defines a maximum and/or minimum number of
behaviours that must be selected, e.g[# >= 2]{b, c, d}
specifies that at least two of the eventsb, c andd must be
chosen. The keywordall can be used in the cardinality
constraint to denote all event relationships whose behav-
iour is possible in the current context (i.e. whose causally
preceding events have occurred and guards satisfied).

Although subset choice can be described in terms of the
other composition operators, it provides a convenient
mechanism for describing group communication, which is
increasingly common in distributed systems.

2.3  Other semantic constructs

2.3.1  Guards.We allow events and event relationships to
be guarded by logical expressions. Guard expressions



define conditions that must be satisfied at a particular point
in a binding, or that must be satisfied before an event can
be correctly executed.

The logical expressions in a guard can reference any
parameter of a causally preceding event, or information
made available by the binding, and can use any relation-
ships defined by the binding context. For the purpose of
this paper, we denote guards by enclosing logical expres-
sions in square brackets ‘[]’.

2.3.2  Logical NOT.The logical NOT operator, denoted
“¬”, is an explicit specification that a particular behaviour
should not occur. Although not strictly a composition
operator, it is useful in many situations.

2.3.3  Precedence and grouping.Although our primary
goal is not to define a language syntax, it is useful to define
precedence and grouping for the operator to support speci-
fication examples. The precedence of the operators is
defined as follows:

(1) Logical NOT and guards

(2) Causality and independence

(3) Logical AND

(4) Logical OR, Exclusive OR and Subset Choice

Operators with the same precedence are applied left to
right. Parenthesis “()” may be used for grouping to over-
ride precedence.

2.4  Consistency

There is potential for conflict between ordering, param-
eter and timing specifications in an event relationship
specification. A consistent specification must be free of
such conflicts, in particular:

• an event specification must not contain any cycles in
the partial order defined by its ordering specification,
and there must be no contradictory statements of
causal dependence and causal independence;

• event parameter relationships must not exist where
there is no causal relationship between events;

• timing relationships must not contradict the ordering
relationships, e.g. a constraint on the starting time of
an event should not specify or imply that it occurs
before the starting time of a causally preceding event;
Where these consistency requirements are applied to a

non-deterministic specification (i.e. one involving OR,
exclusive OR or subset choice), then the requirements
must be met for all possible behaviours.

2.5  Abstraction

Abstraction is the process of hiding irrelevant detail to
establish a simplified model, or the result of that proc-
ess[5]. In terms of our semantic model, abstractions are
used to hide those event relationship details and the build-
ing blocks that are irrelevant for the specific aspects of an
architecture being modelled.

Consider for example the specification of a workflow
model which describes the flow of contractual activities
between two organisations. Typically, this include contract
negotiation, validation, monitoring and enforcing activi-
ties[11]. The complexity of some of these individual activ-
ities and the different viewpoints of those involved in the
interaction suggests the need for abstraction.

The concept of refinement is the inverse of abstraction.
It is a process of transforming a specification into a more
detailed specification. This is, for example, useful in veri-
fying conformance to standards, such as ODP standards[5]
or software engineering methodologies based on refine-
ment.

Both the abstraction and refinement concepts represent
powerful mechanisms for the specification of open distrib-
uted systems, and also represent an important part of our
semantic model. We outline these aspects of our model by
focusing on abstraction.

We define the semantics of our abstraction operators as
follows. An abstractionS’ of event relationshipS is
defined by the statement:

S’ ≡R S,
where S, S’ and R are all event relationship expressions.
The abstraction operator specifies the logical AND of
these three specifications (S ∧ S’ ∧ R), and states that S is
synthesised from S’ using the event relationship R. R spec-
ifies the causality, parameter and timing relationships
between the events of S and S’. The notion of synthesis
implies the following rules:

• parameters of output events in S’ must be expressible
in terms of parameters of causally preceding events in
S or S’;

• parameters of input events in S’ may be independent of
any event parameters in S. This allows, for example,
an abstraction of a service that hides unnecessary
parameters.
For example, a single output evente can be synthesised

from an event relationship of three events:

e!(p,q)≡R a!(x) ➝ b?(y)➝ c!(z), where

R := c➝ e∧ e.p = a.x∧ e.q = c.z

This states that the evente is synthesised from the
events on the right hand side, subject to the constraint that
e occurs after all those events, and that the parameters



(p,q) of e are equal to the parameterx of a and the parame-
terz of c respectively.

There can be many distinct abstractions of an event
relationship, with no constraints apart from their reliance
on common component events (i.e. there is no requirement
for purely hierarchical abstraction). The abstraction opera-
tor is non-transitive and anti-symmetric, however, the nor-
mal transitivity and symmetry properties apply to event
relationships resulting from the abstraction.

The event relationship resulting from the logical AND
of the three abstraction components must satisfy the stand-
ard consistency requirements specified in 2.3. This is a
mandatory consistency requirement and no further con-
sistency constraints are necessary.

It is sometimes necessary, however, to define abstrac-
tion relationships with the constraint that the less abstract
event relationship is substitutable for the more abstract
event relationship (i.e. S is substitutable for S’). This sub-
stitutability is not guaranteed by the above consistency
constraint. We do not define the additional rules required
to achieve substitutability as it is beyond the scope of this
paper. We note, however, that applying the principles of
Morgan’s refinement calculus[10] or Liskov subtyping[6]
would achieve substitutability.

2.6  Abstract causality operators

The basic event ordering operators (➝ and ||), while
enabling the specification of causal relationships, do not
easily allow the specification of more complex relation-
ships resulting from abstraction, e.g. the relationship
resulting from the specification of a workflow activity as a
set of interwoven activities in another abstraction.

To deal with these complex relationships, we extend
the basic set of event ordering operators. The additional
event ordering operators provide a powerful mechanism
which allows us to hide unimportant orderings in an
abstraction.

In order to define the extended causality operators, it is
necessary to use a descendants function, denotedDesc,
that identifies the set of events that contribute to an event
in a lower-level abstraction. Informally, theDesc function
applied to an evente returns the set of all events that con-
tribute to the behaviour associated withe (i.e. events that
composee either directly or indirectly). Note that if an
evente is atomic then Desc(e)=e. A more formal definition
has been derived, but is excluded for brevity.

Using the above definition, the extended event ordering
operators are described as follows.

• Universal causality, denoted (a b). This operator
states that there is a causal relationship between
descendents of eventsa andb, where the precise order-
ing is irrelevant. Formally:

χ

(a  b) :=∃a’ ∈ Desc(a),∃b’ ∈ Desc(b) :
(a’ ➝ b’) ∨ (b’ ➝ a’)

The  operator is symmetric and non-transitive.

• Universal ordered causality, denoted (a b). This
operator allows the expression of a specific “cause-
effect” ordering between descendant of eventsa andb.
Formally:

(a  b) :=∃a’∈Desc(a),∃b’∈Desc(b) : (a’➝b’) ∧
¬∃ (a”∈Desc(a), b”∈Desc(b)) : b”➝ a”

The  operator is anti-symmetric and non-transitive.

• Universal cyclic ordered causality, denoted (a b) .
This operator allows the expression of a cyclic causal-
ity, whereby a descendent ofa from the causally
affects a descendent ofb and vice versa. Formally:

(a  b):=∃a’ ∈Desc(a) ,∃b’ ∈ Desc(b) : (a’➝ b’) ∧
∃a”∈ Desc(a), b”∈ Desc(b) : (b”➝ a”)

The  operator is symmetric and non-transitive.
Given our consistency constraint specified in 2.3, this
operator implies that one ofa or b is non-atomic.

We illustrate the use of these extended causality opera-
tors using the example of the serial execution requirement
for ACID transactions:

A transaction is an abstraction of a set of operations
with a sequential, causal order. Distinct transactions
conflict if any of their component operations con-
flict. An execution of transaction T1 followed by T2
is correct if and only if all causal relationships
between their respective operations are consistent
with the order of T1 and T2, that is, all their opera-
tions are independent or T1(OPi) ➝ T2(OPj). This is
also called a serial execution. The negation of the
above rule (and with the transitivity properties of➝)
means that T1 or T2 can precede itself (there is a
cycle in the causal ordering). By generalizing this
example to n transactions executed in a history H it
can be stated that an execution of a set of transac-

tions is a serial execution if∀ Ti ∈ H: ¬(Ti  Ti).

This example shows how our abstract ordering opera-
tors allow specifications of behaviour at a more abstract
level (e.g. in terms of transactions rather than the individ-
ual operations).

We note that the abstract causality operators also allow
the description of non-deterministic ordering in behaviour,
allowing an execution environment to make scheduling
choices where multiple orderings are possible.

3 Modelling concepts

The preceding section introduced the basic concepts we
use to model behaviour. In this section, we defineinter-

χ

χ
➝χ

➝χ

➝χ
↔χ

↔χ

↔χ

↔χ



faces andbindings which allow us to structure and encap-
sulate behaviour. We also introduce the notion ofroles,
which are placeholders for interfaces in a binding. These
concepts give additional abstraction capability over that
defined in 2.4.

3.1  Interfaces

An interface is an abstraction of an object that identifies
a subset of the interactions of that object with its environ-
ment. An interface is defined by the tuple<name, loc,
ER> where:

• name is the denotable name of the interface

• loc is the location of the interface

• ER is an event relationship describing the behaviour
occurring at that interface. All events in ER occur at
the interface locationloc, noting that an interface loca-
tion may change over time.
In this paper, we denote the execution of an evente by

an interfaceInt asInt.e.

3.2  Roles

A role is a placeholder for interfaces within a binding,
describing the common behaviour and expectations of
interfaces filling that role. A role is defined by the tuple
<name, card, interfaces, ER> where:

• name is the denotable name of the role

• card is a cardinality constraint specifying the maxi-
mum and/or minimum number of interfaces that may
fill the role

• interfaces is the set of interfaces filling the role

• ER is an event relationship describing the allowable
and expected behaviour of interfaces filling the role
A role can be filled by an interface if their event rela-

tionship specifications are compatible. A strong compati-
bility requirement can be a subtype relation defined in
[6][13]. In this case, we say that an interface and a role are
matched if the interface is a subtype of the role. Weaker
compatibility requirements are quite common in practice,
for example, DCE requires only that version identifiers
share the same major version number.

The execution of an event by an interface filling a role
may be non-deterministic, since a role can be filled by
many interfaces. Where more than one interface can fulfil
a role, we define the execution of an event by a role to
have subset choice semantics as defined in 2.2.4, that is, a
subset of the interfaces filling the role each execute the
event at their interface.

In this paper, we denote the execution of evente by role
R asR.e, noting that this can be prefixed with a cardinality
constraint if the role can be filled by more than one inter-

face. In role specifications, we typically omit the specifica-
tion of interfaces filling roles, allowing interfaces to be
associated with roles by the enclosing context.

3.3  Bindings

The most useful interactions in open distributed sys-
tems are those which occur between events located at the
interfaces of different objects. In our semantic model,
these interactions are encapsulated in a binding, which
provides an environment for the execution of interactions.
A binding is defined by the tuple<name, roles, ER>
where:

• name is the denotable name of the binding

• roles is a set of placeholders for interfaces, defined in

• ER is an event relationship describing a composition of
the behaviour executed by interfaces filling the roles.
This behaviour must be consistent with any configura-
tion of interfaces correctly filling the roles of the bind-
ing. More formally, the AND of the binding event
relationshipER with the event relationships of inter-
faces filling the roles must be consistent using the rules
defined in 2.3.
Figure 1. illustrates a binding with 5 roles, three of

which are filled by single interfaces. Although not illus-

trated, an interface can fulfil multiple roles, e.g. an inter-
face which supports transaction semantics should fulfil
roles of (1) executing normal operations such as read or
write and (2) executing transaction verbs such as commit
and prepare. It is important to note that a roles in a binding
need not be complementary, i.e. there does not need to be a
receive event for everysend event.

To illustrate the utility of our modelling concepts, the
following example specifies a multicast binding.The syn-
tax used in this example is arbitrary and should not be
taken as an indication of likely language syntax. In this
example, comments are preceded by “--” and role defini-
tions are terminated by “;” and the role and behaviour
specifications are introduced by keywords and enclosed in
braces “{}”. We also leave the association of interfaces
and roles unspecified, allowing the binding to be used
between any set of objects with compatible interfaces.

O2

O3

BINDING

Interface fulfulling a role

Figure 1. Binding
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Binding MultiCast {
Roles {
S:[#=1],send!; -- 1 sender
R:[#>1],rec?; -- >1 receivers

}
Behaviour {
S.send! ➝ [#>1] R.rec? ∧
[#=all]R.rec? *= S.send!

}
}

This specifies that in a binding with one senderS and
more than one receiversR, a send event by the sender
interface results in multiple receive events at distinct
receiver interfaces, and the parameters to those receive
events have name equivalence with those of the send
event.

3.4  Composition of bindings

In order to support re-use and abstraction of bindings, it
must be possible to use pre-specified bindings in a higher-
level specification. To support this, we define that the use
of a binding within a behaviour specification corresponds
to the specification of that binding’s event relationshipER.
This allows the use of a binding as an argument to any
operator defined for event relationships, including all of
those defined in section 2.

When re-using a binding specification, the association
of interfaces and roles in the binding can be either explic-
itly specified within the binding, or specified by the con-
text in which it is used. Where the enclosing context is
another binding, the interfaces filling roles of the enclos-
ing binding can be associated with the roles of the
enclosed binding.

This concept is best illustrated by an example. Our
example uses the previously defined multicast binding and
a new choose-reply binding to construct multicast RPC.
We first define choose-reply and then define the composi-
tion that gives us multicast RPC. Choose-reply is defined
as follows:

Binding  ChooseReply {
Roles {
S:[#>0], send!; -- >0 senders
R:[#=1], rec?; -- 1 receiver

}
Behaviour {
[#>0]S.send! ∧
[#=1]S.send! ➝ R.rec? ∧
R.rec? *= [#=1]S.send!

}
}

This specifies that in a binding with one or more send-
ersS and one receiverR, at least one sender sends, and
exactly one of those send events results in a receive event
at the receiver. The parameters to the receive event have
name equivalence with those of the casually preceding

send event. In other words, a message is non-deterministi-
cally chosen from a set of possible messages.

The multicast RPC binding is created by composing
ChooseReply and Multicast bindings as follows:

Binding  MulticastRPC {
Roles {
Client: [#=1] send! ➝ rec?;
Servers: [#>1] rec? ➝ send!;

}
Behaviour {
Multicast(S=Client,R=Servers) ➝
ChooseReply(S=Servers,R=Client)

}
}

This specifies that a multicast RPC binding has a single
client, which executes a send followed by a receive, and
multiple servers, each of which may execute a receive fol-
lowed by a send. The behaviour specifies that a multicast
with the client interface bound to the sending role and
server interfaces bound to the receiving role is executed,
followed by a choose-reply with the server interfaces
bound to the sending role and the client interface bound to
the receiving role.

The underlying behaviour specifications of the com-
posed bindings results in the a multicast RPC being speci-
fied. Note that neither the client nor the servers need to be
aware that the request is being multicast, or that multiple
servers may reply. The clear distinction of interface and
interaction allow this flexibility.

This example demonstrates the power of our semantic
model in structuring, composing and abstracting specifica-
tions of a distributed systems architecture.

4 Discussion

The focus of this paper is on defining a semantic model
for describing the architecture of open distributed systems.
While the model presented is extremely powerful and
introduces a number of novel features, there are a number
of areas that require further research and refinement.

The eventual goal of our work is develop a architecture
description language, and there are a number of useful lan-
guage features that are not reflected in our model. In par-
ticular, we believe that the ability to dynamically define
and modify behaviour through a well-defined meta-level is
a necessary feature of a language. While our current
semantic model does not preclude this feature, further
work is required to introduce the necessary facilities.

Our model currently does not address the issues of
binding configuration, instantiation and termination in an
executable environment. On these issues, we expect to be
guided by practical work on building Hector, an execution
environment for the DSTC architecture model[1].



While we are easily able to describe complex behaviour
in our current model, there are no iteration semantics for
describing repetitive behaviour. This is at least partly
because the requirements and hence appropriate semantics
are not clear. This is an important issue that will be dealt
with in the near future.

5 Related work

Our work embodies much of the existing theoretical
and practical aspects of modelling open distributed system
architectures.

The theoretical aspects of our model are similar to sev-
eral event-based formal description techniques including
as CCS[9], CSP [3] and LOTOS[4]. These provide similar
notions of ordering and gates or ports (interfaces). Based
on the assumption of synchrony and event atomicity, how-
ever, these techniques have limited ability to describe
complex interaction or support abstraction. For example, it
is quite difficult to describe multicast in any of these lan-
guages. They also have limited ability to describe non-
trivial parameter relationships, and none for describing
explicit temporal constraints. Their advantages lie in the
ability to analyse behaviour using exist tools and in the
simplicity of the synchronous approach.

The practical aspects of our work are similar to ongoing
research on software architecture[7][8][12][16]. Moriconi
et al[12] present a method for the stepwise refinement of
an abstract architecture into a correct lower-level architec-
ture that is intended to implement it. Shaw et al[16] use a
fixed set of connection architectures, rather than providing
a model for describing arbitrary architectures. The notion
of binding in our model is similar to the concept of con-
nector in these works. Our work extends these, particu-
larly in the handling of event parameters, and the power
and flexibility of our behavioural specifications and
abstraction.

Darwin[8] is a declarative binding language used to
define hierarchic compositions of interconnected compo-
nents. The focus in Darwin is on constructing a correct
configuration of components, rather than describing the
behaviour of a configuration of objects, and as such it is
not directly comparable to our work. The concepts of Dar-
win could be useful, however, when we address the issues
related to binding instantiation. Darwin has a formal
semantics given in onπ-calculus based largely on CCS[9].

Rapide[7] is a concurrent event-based simulation lan-
guage for defining and simulating the behaviour of archi-
tectures for distributed systems. It is probably closest to
our work in terms of semantics, but with a focus on simu-
lation and analysis rather than supporting the construction
of distributed systems. It includes the concept of event pat-
tern mapping to provide abstraction with similar results to

our abstraction operator. We believe that our semantic
model based on event relationship specifications allows
more concise expression of rich interactions, and has dif-
ferent but equivalent facilities for abstraction.

Recent work on a Unified Modelling Language
(UML)[16] from the object-oriented analysis and design
community aims at providing a common, stable, and
expressive object-oriented development method. While
the initial version of UML did not deal with distribution
and concurrency, recent developments do address these
aspects. Although we have not yet analysed their work in
detail, the notion ofpattern in UML is quite similar to our
binding concept.

6 Conclusion

In this paper we have presented a semantic model that
provides a foundation for the description of interactions in
open distributed systems. In deriving the model we were
driven by the pragmatic requirements of open distributed
systems: interworking between heterogeneous middleware
platforms, reuse of objects, and evolvability of systems.

The specification of interaction behaviour is based on
the notion of events and event relationships, and we use an
asynchronous model to embody typical characteristics of
interaction between objects in open distributed systems.
Event relationships are expressed in terms of event order-
ing, parameter relationships, and temporal relationships.
Each of these aspects reflects distinct needs of the builders
and users of open distributed systems. The event parame-
ter relationships in particular support the concise specifi-
cation of interworking requirements in open distributed
systems, for example, interworking between CORBA and
DCE objects. The time relationships reflect the need to
specify timing properties in many applications, for exam-
ple, multimedia video transmission.

In our model, special attention is given to the problem
of composition and abstraction to address the need for
reuse and evolution in open distributed systems. The event
composition and abstraction operators enhance the expres-
siveness and clarity of behavioural specifications, and pro-
vide a semantic foundation for the specification of
interfaces, bindings and their composition.

Interfaces and bindings are the main building blocks for
an architecture of open distributed systems. These con-
cepts provide a powerful mechanism for structuring and
reasoning about open distributed systems. The use of bind-
ings in particular can facilitate the standardisation of com-
mon interactions such as multicast, and has significant
potential for application to enterprise-level interactions.

We believe that this work, specifically oriented towards
architectures for open distributed systems, is relevant to
many existing and future software engineering practices.



In particular, it provides a basis for deriving architecture
description languages for open distributed systems. The
DSTC Open Environment[1] provides a complementary
infrastructure for testing and refining the semantic model
defined in this paper. Coupled with the capabilities of this
infrastructure, an architecture definition language based on
this work can provide both research and commercial plat-
forms for implementing feasible and flexible open distrib-
uted systems.
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