
Real-time analytics for legacy data streams in health
Monitoring health data quality

Andrew Berry and Zoran Milosevic
Deontik Pty Ltd

Brisbane, Australia
andyb@deontik.com, zoran@deontik.com,

Abstract—Healthcare organizations are increasingly using
information technology to ensure patient safety, increase
effectiveness and improve efficiency of healthcare delivery. While
the use of health information technology (HIT) has realized many
improvements, it has also introduced new failure modes arising
from data quality and IT system usability issues. This paper
presents an approach towards addressing these failure modes by
applying real-time analytics to existing streams of clinical
messages exchanged by HIT systems. We use complex event
processing provided by the EventSwarm software framework to
monitor data quality in such systems through intercepting
messages and applying rules reflecting the syndromic surveillance
model proposed in [4]. We believe this is the first work reporting
on the real-time application of syndromic surveillance rules to
legacy clinical data streams. Our design and implementation
demonstrates the feasibility of this approach and highlights
benefits obtained through improved operational quality of HIT
systems, notably better patient safety, reduced risks in healthcare
delivery and potentially reduced costs.

Keywords-health; analytics; real-time; data quality;
syndromic surveillance

I. INTRODUCTION
Healthcare organisations and facilities are increasingly

using information technology to ensure patient safety,
increase effectiveness and improve efficiency. While the use
of health information technology (HIT) has realised many
improvements, it has also introduced new failure modes
arising from data quality and IT system usability issues [1].
Healthcare organisations and facilities are increasingly
looking for solutions that can recognise data quality and
usage issues, then act immediately and in real time. This
automatic recognition of issues can improve quality and
efficiency through faster reaction to opportunities and
threats. The volume, complexity and velocity of data streams
that feed such real time analytics are increasing. While
database tools can provide the analytical capability and in
some cases deal with the volume of data, they lack the ability
to behave actively and respond in real time. Complex event
processing technology (CEP) provides mechanisms that can
address the real-time requirement (velocity), and with the
right architecture, can also handle the volume and analytical
capabilities required.

Health messaging is mature and quite entrenched in
laboratories and other healthcare facilities. These facilities

emit results, assessments and other messages typically
structured in a form governed by the Health Level 7 (HL7)
v2 standards [2]. The primary use of such data in current
applications is for clinical (human) interpretation. The
structured nature of this messaging, however, makes it
feasible to attach a CEP engine to the stream of HL7 v2
messages received and emitted by a laboratory. CEP can
then be used to monitor messages in real time and
automatically detect data quality issues and clinical issues of
interest. Such monitoring can improve the safety of the HIT
systems and reduce the risk of harming patients [1].

In this paper, we describe the application of CEP
techniques embodied in the EventSwarm framework [3] to
legacy streams of HL7 v2 messages, using statistical
techniques to identify unusual behaviours that indicate
failure or data quality issues. A review of CEP capabilities
and semantics is presented both to ensure readers are familiar
with the technology and to position the distinguishing
characteristics of EventSwarm. Upon recognition of such
behaviours, an alert is sent to an operator or maintenance
organisation to investigate and fix the problem as quickly as
possible. The solution allows health organizations to
continuously monitor the quality of data exchanged and thus
the HIT systems from which the data originates -
contributing to the improved safety of HIT components and
ultimately to the safety of patients. The high cost and high
demand on equipment used to produce laboratory messages
also makes outages very costly. Thus there is also a
considerable cost benefit in having such real-time analytics
and alerting.

This paper is motivated by the recent work of Mei-Sing
Ong et al [4] who proposed a new approach to early
detection of HIT system failures using a syndromic
surveillance method. They demonstrate the efficacy and
feasibility of such surveillance against a static data set. We
extend this work to show how the surveillance can be
implemented in real time against existing data streams using
the EventSwarm framework. Our solution also takes
advantage of the HL7 data typing to extend the scope of the
syndromic surveillance presented in [4].

The paper is structured as follows: section II identifies
and discusses potential adverse impacts of HIT on patient
safety and outlines the syndromic surveillance approach as a
way of improving safety of HIT systems; section III provides
a review of real-time analytics capabilities provided by CEP
in general and EventSwarm in particular; section IV

describes the design and implementation of a solution using
EventSwarm to implement syndromic surveillance against
HL7 v2 data streams; section V discusses key features of the
solution and other potential applications of CEP in
monitoring HIT systems in general; and section VI
concludes the paper.

II. IMPROVING PATIENT SAFETY AND REDUCING COSTS :
USE OF IT FOR MONITORING

A. Health IT and Patient Safety
A recent report published by Institute of Medicine [1]

identifies a number of new concerns arising from the
increased use of HIT in support of patient care. While the
report highlights the benefits that HIT brings, including
significantly improved quality of health care and reduced
medical errors, the paper also provides some evidence of
unintentional consequences of HIT on patient safety. It
warns that if designed and applied inappropriately, HIT can
add an additional layer of complexity to the already complex
delivery of health care. This in turn can lead to unintended
adverse consequences, for example dosing errors, failure to
detect fatal illnesses and delayed treatment due to poor
human–computer interactions or loss of data [1].

The concern for patient safety needs to be reflected in the
design, implementation, use and maintenance phases of HIT
systems. It is important to note that each of these stages
needs to be informed by the enterprise or community context
in which the HIT systems are to be implemented. This is
reinforced in the report, stating that ‘safety is an emergent
property of a larger system that takes into account not just
the software but also how it is used by clinicians. The larger
system—often called a sociotechnical system—includes
technology (e.g., software, hardware), people (e.g.,
clinicians, patients), processes (e.g., workflow), organization
(e.g., capacity, decisions about how health IT is applied,
incentives), and the external environment (e.g., regulations,
public opinion)’ [1]. We take these considerations into
account in the design and implementation of our solution, as
will be discussed in section IV.

B. Health IT and Cost
HIT reduces the cost of healthcare delivery by reducing

time spent by clinicians on time-consuming paper work and
allowing them to focus on healthcare delivery. Costs are also
reduced through automation of clinical workflows.

IT systems can also reduce costs arising from
organizational or human factors, such as requesting duplicate
lab orders or medications. These actions can be detected
through the use of an appropriately configured monitoring
infrastructure as will be discussed in section IV.

C. Syndromic Surveillance approach: Laboratory Orders
and Results
In order to deal with early detection of HIT system

failures, Mei-Sing Ong et al [4] investigated the feasibility of
using a syndromic surveillance approach to detect health
system failures. Syndromic surveillance is typically used in
early detection of disease outbreaks and the authors wanted

to determine whether a similar approach could detect HIT
failures. They focused on detecting HIT failures in a
laboratory information system (LIS) at a tertiary hospital,
looking for anomalies in semantics (e.g. unexpected values)
as well as structure (e.g. missing values) of data. A study of a
one-year dataset from the hospital was performed for which
the authors simulated four types of HIT failures and
performed statistical analysis of the LIS data to detect those
failures.

Their initial results were encouraging, suggesting that
syndromic surveillance methods ‘can be potentially applied
to monitor HIT systems to facilitate the early detection of
failures’ [4]. We leverage this work and show how elements
of the syndromic surveillance system they described can be
implemented through near real-time monitoring of HIT
systems. In the following subsections, we briefly describe
their approach, focusing in particular on the elements of
relevance for our implementation.

Typical steps in undertaking syndromic surveillance are:
defining syndromes; modeling baseline profiles; defining
detection algorithms; and model validation. These steps are
described next, based on the approach presented in [4], with
a view of how they can be implemented using EventSwarm.

1) Defining syndromes
In the LIS scenario described, a number of symptoms or

problems related to data quality were defined which are
collectively referred to as the syndrome for LIS failures.
These are: (1) loss of laboratory record created by a provider;
(2) loss of data stored as a field within a laboratory record;
(3) erroneous data being introduced into existing records (i.e.
data entered by a provider differ from the data being stored
or retrieved); and (4) unintended duplication of data (i.e.
duplication of existing records not manually created by a
provider).

In order to capture these four classes of failure
symptoms, in their analysis the authors focused on the
following indices and were looking for unexpected changes
in them as signals for potential LIS problems:

1. Total laboratory records created in a given time
frame so that an unexpected drop in the number of
test records provides an indicator for data loss at the
record level.

2. Total laboratory records with missing result so that
an unexpected increase in the number of tests with
missing results field provides an indicator for data
loss at the field level.

3. Average test results for individual tests (serum
potassium was selected as a proof of concept), so
that an anomalous shift in the average level of
serum potassium across all patients could signify
that the data integrity of the LIS has been
compromised.

4. Total number of tests of any types performed on the
same patient within 24 hours of the same test being
performed, so that a sudden increase in the number
of duplicated tests requested is an indicator that test
requests might be unintentionally duplicated.

The EventSwarm solution described in section IV
focuses on items (3) and (4) above, since they are easily
identifiable against an HL7 data stream. For (3) in particular,
we are able to maintain statistics for all test results having
numeric values.

2) Modeling baseline profiles
The purpose of this step is to establish a baseline against

which new data can be compared in order to detect
unexpected changes in indices. In [4], they have used two
thirds of the dataset to establish the baseline values, and then
used the remaining third to simulate new data arrival. The
baseline values were established by applying statistical
analysis to calculate mean, standard deviation and variance.

3) Defining detection algorithms
In this step, one defines rules for detecting significant

unexpected changes. In [4], they have used a statistical
control algorithm with the following triggers:

• If an observed data is 3 standard deviation (SD)
above or below mean;

• Two out of three successive points more than 2 SD
from the mean on the same side of the mean line;

• Four out of five successive points more than 1 SD
from the mean on the same side of the mean line;
and

• Six successive points on the same side of the mean
line.

The EventSwarm solution implements each of these
controls, evaluating the data in each HL7 message against
each control.

4) Model validation
The purpose of this step is to perform validation of the

model to detect failures. In the study this was achieved
through simulating failures, each lasting for 24 hours with
error rates ranging from 1% to 35%. The detailed description
is beyond the scope of this paper, but the key conclusion was
that syndromic surveillance methods were successful in
identifying failures in HIT systems.

III. REAL-TIME ANALYTICS AND EVENTSWARM
EventSwarm is a programming framework for complex

event processing [5] or more recently referred to as real-time
analytics. In this section, we provide an overview of CEP
and EventSwarm in particular.

A. Origins
CEP is the analysis of streams of discrete information

elements known as events. An event signifies an occurrence
of interest, that is, it is a record of an observation made by a
person or system. The complex adjective is used to highlight
the application of correlation, aggregation and abstraction to
raw event streams, allowing systems to recognize complex
patterns of behaviour through analysis of the streams.

Luckham et al [5][7] and Bacon et al [6] pioneered
research into CEP in the 1990s. Luckham focused on
simulation and pattern matching, while Bacon et al focused
on the construction of distributed applications using event-
driven approaches. Rakotonirainy et al [8] published early
work on building abstractions from event relationships in a

similar timeframe. In [9], Berry extended and generalized
this work and provided semantic foundations for describing
event-based interactions in distributed systems. Early
applications of CEP to real-time contract monitoring were
explored by Milosevic et al [10] and Linington et al [11].
This body of work has steadily matured and is now
embodied in a number of commercial products, including
Apama [12], Esper [13], Infosphere Streams (IBM) [14],
BusinessEvents (Tibco) [15], Oracle [16], SAP [17] and
EventSwarm [3].

The features available in these products vary according to
their targeted markets and applications, but many
commonalities exist. Subsequent sections explore the typical
capabilities of CEP systems and highlight the distinguishing
characteristics of EventSwarm. A more extensive review can
be found in [20].

B. Features
The core capability of all such systems and many

preceding systems is to match the attributes of individual
events, and as such, this capability is assumed. The key
feature of CEP systems is the ability to recognize higher-
level patterns through correlation, aggregation and
abstraction. The following subsections describe some of
these capabilities.

1) Event Expressions
Event expressions are the fundamental building block of

a CEP system, allowing the specification of matching criteria
for a single event. In the simplest cases, event expressions
are based on static inspection of individual event attributes,
for example, e.color = red. CEP systems can,
however, offer far more sophisticated event matching based
on statistical analysis, patterns and other computed
abstractions.

In subsequent sections, event expressions are referenced
by capital letters (e.g. A, B ...).

2) Filtering
Event streams associated with CEP are becoming

increasingly voluminous, and a common mechanism used to
constrain the scale of analytics is filtering. A filter applies an
event expression A to a stream or streams and excludes
events that do not satisfy A from any subsequent processing.
Filtering event expressions can range in complexity from
simple static inspection of event attributes to comparisons
against complex computed abstractions, typically depending
on the event expression capabilities offered by the system, as
discussed in the preceding subsection.

 The EventSwarm framework includes the ability to filter
on any computed abstraction that matches a single event,
including statistical analysis (e.g. attribute e.x is more than
r standard deviations from the mean of all e.x attributes
observed).

3) Pattern matching
Pattern matching is a core correlation mechanism and

refers to the ability of the system to match event patterns
using logical operators and sequencing over event
expressions, including:

• AND, that is, a pattern A AND B matches pairs of
events e1,e2 such that e1 satisfies A and e2
satisfies B.

• OR, that is, a pattern A OR B matches one or more
events e1,e2 such that e1 satisfies A or e2
satisfies B.

• XOR, that is a pattern A XOR B matches individual
events e such that either e satisfies A or e satisfies B
but not both.

• repetition, that is, a pattern A{n} matches n
occurrences of A. Repetition is sometimes
considered a specialization of AND.

• sequence, that is a pattern A then B matches
pairs of events e1,e2 such that e1 satisfies A and
e2 satisfies b and e1 occurs before e2 in time.

• causal sequence, that is, A -> B matches pairs of
events e1,e2 such that e1 satisfies A and e2
satisfies B and e1 causally precedes e2 using a
comparison based on vector clocks [18].

In all cases above, these patterns are usually extensible to
n event expression components. The availability of these
pattern components varies across systems. While the first
five above are assumed capabilities for a CEP system, the
causal sequence capability is less widely available. The
EventSwarm framework is capable of using causal
precedence in sequence patterns, although as discussed in the
following subsection, this has limited value outside closed,
tightly coupled systems.

 The above pattern types do not usually exclude the
possibility of intervening events, that is, one or more events
e{n..m} that occur between e1 and e2. For most CEP
systems, there is an underlying assumption of partial state,
that is, a complete view of all behaviours is not available,
making such exclusion inappropriate.

4) Complex events
A pattern match in a CEP system is sometimes called a

complex event. A complex event is a set of events that
indicates a behaviour of interest. Systems typically provide
mechanisms to capture complex events in a higher-level
structure that references the component events and the
pattern or abstraction that it represents. EventSwarm uses the
general term Activity for this type of event, and the specific
term ComplexExpressionMatch for events generated as a
result of matching a pattern.

5) Time and ordering
As implied in the previous section, there are a variety of

ways to manage the ordering of events in time. A key
difficulty in CEP is that different event sources also have
different time sources. A further complication arises because
the latency of delivery is such that events are often delivered
out of order. Thus a CEP solution needs to have a considered
and careful approach to the use of event timestamps and
event ordering. This approach is particularly important in the
handling of sequence patterns.

Some systems will use the clock time on the system that
is processing the events. This is simple and ensures that
events can be presented for processing in a time-consistent

order. It also has many deficiencies, in particular, it makes
sequencing of events particularly inaccurate due to latency
and clock skew when distributed event sources are used. In
such systems, sequence patterns must be treated with
considerable caution.

Other systems will use the event timestamp of events and
provide mechanisms to handle out-of-order events. This is
more complex to implement and requires that application
design considers event sources and timing to ensure that out-
of-order events are correctly handled. When combined with
appropriate buffering of events in expressions, it provides a
much more robust and reliable result. This approach also
allows for flexible replay in simulation and testing scenarios,
ensuring time windows and other time-driven expressions
are correctly evaluated. This approach still suffers from
inaccuracy arising from clock skew across the event sources.
Providing an allowance for clock skew in time comparisons
can assist, that is, treating events from distinguished sources
as concurrent if their timestamps differ by less than the
maximum anticipated clock skew. It should be noted that this
skew allowance can result in false negatives when matching,
so must be applied judiciously. Due to the difficulties
associated with sequencing, it is often better to use a logical
AND within a time window instead of a sequence for patterns
where matched events are close in time.

It is also feasible in some cases to implement ordering
comparisons based on vector clocks [18] to define a causal
order. Few CEP systems provide this capability, in part due
to the relative difficulty of implementation: establishing
causal precedence is generally only possible in a closed
system with cooperating components and limited
communication mechanisms.

The EventSwarm framework uses event timestamps and
buffering to provide a robust and flexible time and ordering
implementation. It uses before, after and indistinguishable or
parallel relationships between events to give flexibility in
ordering. Time skew allowance and causal ordering based on
vector clocks are available, although as noted, it is difficult
to use causal ordering except in closed environments. These
time handling features are quite novel in an implementation
of complex event processing, giving EventSwarm
considerable flexibility in dealing with multiple, independent
data sources.

6) Sliding Time Windows
Sliding time windows are an aggregation mechanism that

limits the scope of correlation and abstraction to a window
that moves relative to the current time. A sliding time
window includes all events whose timestamp is within a
defined period before the current time.

An important aspect of sliding time windows is in how
the current time is determined. Some systems will use the
clock time; others will use event timestamps to determine the
window bounds, that is, an event e1 remains within the
window until a subsequent event e_n is observed with a
timestamp more than the window period ahead of e1. This
latter approach is more robust in a distributed context,
although there are still window accuracy implications for
both approaches when events are received out-of-order or

with high latency. The EventSwarm framework uses the
event timestamp approach.

7) Statistical Analysis
Statistical calculations are essential in many applications

of CEP. A CEP framework typically provides the ability to
calculate statistics on attributes of events, or in some cases,
on other values computed during processing. These
calculations can then be used to detect, for example, when
the average price of a stock has risen by more than 10% or
when a health care laboratory result falls more than 3
standard deviations outside the mean value for that result.
This provides a particularly powerful way to detect unusual
or important events.

Combining statistical analysis with sliding time windows
can further extend the power of a CEP framework, for
example, allowing us to compare the long-term average
traded volume of a stock with the average traded volume in
the last hour. EventSwarm provides the ability to calculate
statistics on sliding time windows and use the statistics in
expressions.

8) Language, Expressiveness and Complexity
There are two major approaches towards defining event

patterns and abstractions in CEP: on one side there are
approaches using domain specific languages, often based on
SQL (e.g. Esper [13]); on the other side there are approaches
based on general purpose programming languages. Both
have strengths and weaknesses, notably:

• Domain specific languages can provide a more
approachable learning path and hide complexity in
the query processor and optimizer; programming
frameworks typically require a deeper understanding
of the concepts and implementation, thus a longer
learning curve.

• Hiding complexity in a domain specific language
typically reduces flexibility and expressiveness (e.g.
distribution, parallelism as discussed below);
programming frameworks based on a general
purpose language give access to all facilities
available in that language, thus maximizing
flexibility and expressiveness.

• Lack of standardization across domain specific
languages means that experts are uncommon and
users rely on the CEP vendor to resource projects;
programmers are readily available to resource
projects when a general purpose programming
language is used.

Note that in all cases, there is potential to define patterns
or abstractions that quickly exhaust the available resources
due to combinatorial explosion. There is also no guarantee
that expressions correctly match the behaviours required for
the underlying business need. Thus a domain specific
language does not absolve users of the need for a software
development lifecycle including requirements gathering,
implementation, testing and deployment, but it can reduce
the cost of the implementation phase for simple patterns.
This implementation advantage is eroded as complexity
increases.

EventSwarm provides a programming framework based
on the Java programming language.

9) Distribution and Scalability
The increasing volumes of raw data being generated by

systems today require distribution and horizontal scalability
to effectively apply real-time analytics. A common term now
used for this voluminous data is big data in motion. CEP
systems differ considerably in their approach to distribution
and scalability, and the approach often depends on the choice
of a domain specific language versus a programming
framework, as discussed previously. The relative scalability
is characterized as follows:

• Domain specific languages typically have system-
determined distribution and parallelism. Such
languages often imply a degree of shared state,
limiting the ability to distribute pattern execution.
Coarse-grained distribution is typically handled
through manual deployment of separate instances.

• Programming language component-based
approaches provide pattern and abstraction
components that can be distributed according to their
semantic constraints and the business need, and then
connected using raw or abstracted event feeds. This
is typically more flexible than domain specific
languages for distribution and parallelism, but the
construction of applications can be more complex
and error-prone.

• Event-driven approaches extend component-based
approaches by requiring that the behaviour of each
component is a function of the input events. These
approaches can allow arbitrary distribution and
massive scalability because behaviour is consistent
in the face of both distribution and parallelism.

EventSwarm uses an event-driven approach, where
distribution capability is implicit in the semantics. It also
provides some useful, semantically-consistent abstractions
for parallelization

In our experience, a key scalability dimension for all
implementations is memory usage. In-memory processing is
required for low-latency evaluation of patterns and
abstractions but this limits the capacity of a processing node.
Storing events on disk provides greater scalability, but
increases latency and complexity. Thus there is a trade-off
between in-memory and disk-backed event processing.
EventSwarm is focused on in-memory processing, with
filtering and distribution capabilities used to achieve the
necessary scalability.

10) Near-real-time capability
The majority of CEP systems evaluate expressions,

patterns and other abstractions continuously as events arrive
at the point of processing. As such, they may be considered
to have near real-time capability. Some CEP solutions rely
on storing events in an in-memory database and periodic
evaluation of queries. This caching and periodic evaluation
increases latency and typically increases memory and
computing capacity requirements for the software.

The EventSwarm framework operates continuously as
events arrive, and thus can be considered near real-time.

C. EventSwarm Architecture and Usage
As discussed in preceding sections, EventSwarm

implements a near-real-time, event-driven approach to CEP.
It provides a range of predefined abstractions and pattern
components implemented in the Java programming
language. There are two typical styles of application built
using this framework:

1. Applications built for specific, pre-defined patterns
or abstractions

2. Domain-specific applications that allow end users to
define new patterns

In both cases, the following activities are required in
building the application:

1. Identifying types of events and their sources
2. Implementing channels to collect events from

previously unimplemented sources
3. Implementing actions required when a pattern or

abstraction is matched
For applications built to match specific, pre-defined

patterns, the necessary patterns and abstractions are coded in
the application and tested statically. For applications that
allow users to define domain-specific patterns, the following
additional steps are required:

1. Identifying the types of patterns required to meet
business needs

2. Implementing a user interface that allows the user to
safely and conveniently define new patterns of the
identified types and select relevant actions

3. Implementing mechanisms to generate and deploy
new pattern instances with associated actions

As discussed in the preceding subsections, the usual
software development lifecycle phases apply for both pre-
defined and user-defined patterns.

For applications that allow definition of new patterns, we
typically use Ruby and its JRuby runtime to build the user
interface and pattern instance configurations. In doing so, we
couple the performance of Java execution for event
processing with the flexibility of Ruby for the more
dynamic, user-oriented tasks.

The design of EventSwarm is intended to support lean,
agile and focused solution development. The application
described in this paper, for example, was built to proof-of-
concept state in two weeks, including tools for generation of
test data and an optimized HL7 parser.

IV. APPLYING EVENTSWARM TO ORDERS AND RESULTS
In this section, we provide an introduction to the

technical details of HL7 v2 messaging and describe how
EventSwarm is configured to monitor the data quality and
cost metrics described in section II.

A. HL7 v2 Messaging
The healthcare industry in the USA, Australia and many

other countries predominantly uses HL7 version 2 (v2)
messages to transmit laboratory orders, results and other
clinical information. For example in Australia, over 90% of
pathology reports were delivered electronically as HL7 v2
messages in 2012. Individual messages are transmitted in a

"fire and forget" manner with distinguished
acknowledgement messages to confirm delivery and
acceptance. HL7 v2 was originally designed to operate over
an OSI 7-layer network architecture but messages are more
commonly transmitted using TCP/IP and associated
protocols in current implementations.

The HL7 v2 standards define a large number of different
message types [2], each identified by a 3-alphabetic-
character prefix to indicate a functional type (e.g. order
message), followed by a caret and a more specific content
type. For example, ORM^O01 identifies a general order
message and ORU^R01 identifies an unsolicited observation
result. The content of each message is organized into
segments, with each segment also having a type identifier,
for example, an OBX segment contains a clinical observation
or result. All messages have an MSH segment containing
message header information. Within each segment there can
be data-elements with fields and sub-fields. Segments can
also have nested segments. Values within segments are
typed, including numeric, coded text and free text. Coded
text fields are taken from a well-defined namespace (i.e. a
pre-defined enumeration of text tokens). The example
depicted in Figure 1. shows a sample OBX segment and
describes its components:

OBX|27|NM|14927-8^Triglycerides^LN||0.9|mmol/L^^ISO+|0.3-4.0||||F
...

Segment
type

Set
id

Value
type

Observation
id

Observation
value

Units Reference
range

Result
status

Figure 1. HL7 v2 OBX Segment]

Thus extracting data from an HL7 message involves
parsing the message, finding the segment or segments that
contain the required data, and extracting the value from the
field.

There are a few key issues associated with processing
HL7 v2 laboratory orders and messages, specifically:

• Segments may by typed FT (free text) and thus
intended for human interpretation. It is difficult for
an analytics engine like EventSwarm to
deterministically evaluate these free text fields,
although work reported in [22] shows promise.

• Coding systems and value types vary widely, often
differing across laboratories. Normalization is
sometimes possible but not feasible in the general
case, thus processing rules might need to be specific
to a laboratory.

• De-jure and de-facto content standards with
normative coding systems exist but are not always
adhered to, with systems relying on the knowledge
of clinicians to interpret results. Such content
standards are typically country-specific.

• Coded values sometimes allow extension, that is, the
value can be selected from an enumeration or a
custom value can be used. Such custom values

introduce complexity and non-determinism into
rules, especially where such rules are used across
health jurisdictions or organizations.

To a great extent, the issues above arise because HL7 v2
message content was primarily intended for human
consumption first and machine processing second. The
subsequent sections describe the design of a monitoring
solution that takes these issues into account.

It is worth noting that the HL7 v2 format is relatively
compact. HL7 version 3 and the associated Clinical
Document Architecture (CDA) standards use XML as the
base syntax. The advantages are improved structuring and
off-the-shelf parsing and validation tools, but this comes at
the expense of compactness and processing overheads. For
real-time analytics at the scale required for our operational
context, the compactness and lower processing overhead of
HL7 v2 is a significant advantage.

B. Operational Context
The assumed operational context for this solution is

within a large integrated healthcare delivery organisation
providing healthcare services for its members. The
organisation is national in scope but with regional
operations. The focus of the implementation is on pathology
orders. The scale of the organisation in terms of laboratory
orders and results is characterized by the following metrics:

• 1,000,000 pathology orders per day
• approximately 50% of pathology orders have

distinguished test identifiers (i.e. not free text
descriptions)

• approximately 2% of pathology orders contain
duplicate tests

• Each laboratory processes and average of 50,000
orders per day

• Current average detection time for laboratory data
quality issues is 1 day

It is worthwhile to consider the scale of this solution, and
in particular, the memory requirements associated with
duplicate order detection. For an in-memory implementation
and assuming a 30-day duplicate detection window, non-
distributed approach would need to hold 30,000,000 records
in memory. At 1KB per order, that equates to 30GB of
memory. The processing and deployment architectures
described in subsequent sections aim to reduce this memory
footprint as much as possible. In most cases, a single
instance of EventSwarm on a modern multi-core CPU will
be able to process this volume of messages and the
associated expressions with capacity to spare. Network and
IO bandwidth considerations could pose problems for a
centralized solution, suggesting a regional solution might be
appropriate. Further discussion relating to regional
deployment is presented in the following section.

C. Design Overview
Our solution operates as follows:
1. Extract a copy of each message transmitted to and

from a laboratory through intercepting the message
in the middleware infrastructure, or through having

the source system send a copy of the message to an
EventSwarm processing node;

2. Feed each message into a configuration of
EventSwarm processing components that implement
rules for data quality and duplicate orders; and

3. Send an alert to the laboratory operator when a
message matches an alerting rule.

This high-level design is depicted in Figure 2.

Laboratory
Pathology

orders

Pathology
results

Duplicate
detection

Quality
analysis

Message
bus

Quality
alerts

Duplicate
alerts

Figure 2. Functional architecture

The data quality metrics require pre-loading of historical
data to establish a stable statistical profile for messaging,
thus our EventSwarm solution also provides a mechanism to
pre-load historical data. It allows historical data to be pushed
through the solution to establish a baseline prior to
connection to a live data feed. This data is readily available
in laboratory environments due to healthcare archiving
requirements. The baseline is extended as new messages are
processed, providing increased statistical stability over time.

EventSwarm processing nodes are deployed either
regionally or per laboratory to ensure scalability and low
latency. This deployment reflects the usual manner of health-
care delivery, that is, a patient will typically receive all of
their health care services within their home region, and will
typically have laboratory tests of a particular type processed
at a single laboratory site. Localization also minimizes the
variation arising from differences in content types and
coding systems, for example, issues associated with coding
extensions discussed in A. Further, localized deployment
provides basis for incremental deployment and evaluation of
benefits before progressing to larger scale deployments. This
deployment architecture is depicted in Figure 3.

Laboratory A
Duplicate
detection

Quality
analysis

Core rules
and

configuration

localisation
for lab A

Laboratory B

Duplicate
detection

Quality
analysis

localisation
for lab B time

deploy

deploy

Figure 3. Deployment architecture

D. Message interception
In the operational context, messages are transmitted to

and from the laboratory using message-oriented middleware.
EventSwarm can connect directly to the middleware and
receive copies of all messages as they flow through the
organisation.

E. Data Quality Monitoring
The data quality monitoring configuration is intended to

detect instances where numeric observations match the rules
identified in section II, that is:

1. A numeric observation is more than 3 standard
deviations from the mean;

2. At least 2 of the last 3 numeric observations are
more than 2 standard deviations from the mean;

3. At least 4 of the last 5 numeric observations are
more than 1 standard deviation from the mean; and

4. The last 6 numeric observations are all on the same
side of the mean.

In contrast to [4], we are able to apply these rules to all
numeric observations in a message rather than a single
observation, grouping them by the observation type id in the
OBX segment containing the observation. The configuration
of components is depicted in Figure 4. This configuration is
attached to a stream of laboratory reports.

expr1
expr 2
expr 3
expr 4

expr1
expr 2
expr 3
expr 4

expr1
expr 2
expr 3
expr 4

expr1
expr 2
expr 3
expr 4

expr1
expr 2
expr 3
expr 4

expr1
expr 2
expr 3
expr 4

expr1
expr 2
expr 3
expr 4

Statistics
Statistics

Statistics
Statistics

Statistics
StatisticsStatistics
abstraction

Observations
powerset

Numeric
only
filter

OBX
= SodiumOBX

= SodiumOBX
= SodiumOBX

= SodiumOBX
= SodiumOBX

= Sodium

Quality
alerts

Figure 4. Data quality monitoring configuration

The configuration of components is described as follows,
in order of processing:

1. We first apply a filter to exclude reports that do not
contain any numeric observations.

2. We then split the reports using a powerset to
maintain a subset for each numeric observation type
id. If a report has multiple numeric observations,
then it will be added to the subset for each of those
types (i.e. the subsets intersect).

3. A statistics abstraction is attached to each subset,
maintaining statistics for all observations of that
type.

4. Four monitoring expressions are also attached to the
subset, with references to the historical mean and
standard deviation maintained by the statistics
abstraction:

a. rule 1 above is directly evaluated by
comparing the current observation with the
historical mean, firing if the observation
value is more than 3 standard deviations
from the mean.

b. rules 2 through 4 above use a LastN
window to capture the last N observations,
and a MatchCount expression to detect
when more than M observations satisfy the

statistical expression. For example, rule 3
would use a LastN window with a size of 5
and a MatchCount expression that fires
when 4 of the collected observations have
values greater than 1 standard deviation
from the mean.

5. For each monitoring configuration, two actions are
connected:

a. An action to notify the laboratory operator
when a match occurs, including a URL for
a page that can display the matching
message(s)

b. An action to store the matching message(s)
on disk for subsequent audit and
investigation

The majority of processing components used in this
configuration are off-the-shelf components from the
EventSwarm framework. Components that were added
specifically for this configuration were:

1. Components to parse HL7 messages and extract data
from those messages. These components are re-
usable in any other EventSwarm application using
HL7 messages.

2. Components to render matching HL7 messages for
display to the laboratory operator.

3. A custom action component to integrate with the
proprietary notification system used in the
operational context.

Note that this configuration has predictable memory
requirements, since we only need to maintain the last 6
observations of each type in memory.

Initial and subsequent loading of historical data is
achieved by establishing the configuration without any
monitoring expressions or actions configured, then
processing the historical documents. Once historical data is
loaded, the monitoring expressions and actions are added. If
required for speed of restarts, a future extension might persist
the statistical abstraction.

F. Duplicate Order Monitoring
The duplicate order monitoring component is required to

detect duplicate laboratory orders for a patient in a defined
time window. As discussed in section IV-B, the scale of
duplicate detection is significant so we have explored the
business problem to identify ways that the scale can be
contained without sacrificing any business benefits. There
are a number of key characteristics of the rules that allow us
to contain the scale:

1. The useful lifetime of the test results varies for each
test. For example, a full blood count has a useful life
of about 30 days, thus duplicates should be detected
in a 30-day window. In contrast an INR (blood
clotting time) has a useful life of about 4 days, thus
duplicates should be detected in a 4 day window.
Shorter windows can significantly reduce memory
requirements.

2. Some tests are inexpensive and unobtrusive for the
patient. Duplicate detection on such tests has limited
benefits. Other tests are particularly expensive or

intrusive, so focusing on such tests can deliver
maximum value from the monitoring.

3. It is inappropriate for the system to reject duplicate
orders. Orders will sometimes have associated free
text to indicate why a duplicate has been ordered,
and in some cases the previous test results might not
be accessible to the requesting clinician (e.g. for
privacy or other reasons). Thus an operator will have
to intervene to determine an appropriate
rectification. This increases the cost of rectification,
particularly if the ordering clinician must be
consulted. The cost of rectification needs to be
weighed against the cost and intrusiveness of the
test.

We are able to configure duplicate detection using the
above business considerations to reduce memory
requirements. In particular, we use a "white-list" of test types
to identify tests for which the benefit of duplicate detection
outweighs the cost. The use of regional processing nodes
also allows us to reduce the scale of any single processing
node. The configuration of components is depicted in Figure
5.

n > 1
n > 1

n > 1
n > 1

n > 1
n > 1

n > 1

Patient
powerset

Patient id
= 123Patient id

= 123Patient id
= 123Patient id

= 123

Patient
powerset

Patient id
= 123Patient id

= 123Patient id
= 123Patient id

= 123

Patient
powerset

Patient id
= 123Patient id

= 123Patient id
= 123Patient id

= 123

Patient
powerset

Patient id
= 123Patient id

= 123Patient id
= 123Patient id

= 123

Patient
powerset

Patient id
= 123Patient id

= 123Patient id
= 123Patient id

= 123

Patient
powerset

Patient id
= 123Patient id

= 123Patient id
= 123Patient id

= 123

Patient
powerset

Patient id
= 123Patient id

= 123Patient id
= 123Patient id

= 123

Test type
powerset

Whitelist
filter

OBX
= SodiumOBX

= SodiumOBX
= SodiumOBX

= SodiumOBX
= SodiumOBR

= Sodium

Duplicate
alerts

Figure 5. Duplicate order monitoring configuration

This configuration of components is described as
follows, in order of processing.

1. Orders are first filtered against a configurable white-
list of tests. If no listed tests are present in the order,
the order is ignored.

2. Orders are split using a powerset to maintain a
subset for each test type. The useful life of each
white-listed test is also maintained, and the subsets
of the powerset are configured to use a sliding time
window with a size equivalent to the useful life of
the test. Note that since an order might contain
multiple tests, that order can appear in multiple
subsets.

3. Orders for each test are split again using a powerset
to maintain a subset for each patient using the patient
identifier information in the order.

4. For each patient subset, a threshold monitor is
attached, firing any registered actions when the size
of the set is greater than one

5. Two actions are connected to each threshold
monitor:

a. An action to notify the laboratory operator
when a duplicate is detected, including a
URL for a page that can display the
matching message(s)

b. An action to save the orders for future audit
and investigation

It is instructive to note that a sliding time window
propagates event removals through the downstream
configuration, meaning that test orders older than the useful
life of the test (i.e. outside the time window) are
automatically removed from any downstream sets.

As with the configuration for data quality monitoring, the
majority of this processing is performed using off-the-shelf
components from the EventSwarm framework. The new
HL7, rendering and action components described in the
preceding section are re-used here, leaving only two new
components for this monitoring:

1. A white list matching component. This is a simple
extension of an existing class in EventSwarm.

2. A set factory component to create test-specific
sliding time windows. This is used by the powerset
to create subsets test type.

 The memory usage of this configuration on a per-
laboratory basis is estimated as follows:

 50000 ∗ 50% ∗ white list% ∗ mean life ∗ size

That is, number of daily events reduced by 50% to
exclude unstructured orders, and reduced by the percentage
of orders that match the white list, multiplied by the mean
life in days of the white-listed tests. If we assume a white-
listed volume of 30%, a mean life of 10 days, and an average
order size of 1KB, we get:

 50,000 ∗ 0.5 ∗ 0.3 ∗ 10 ∗ 1ΚΒ = 75,000ΚΒ or 75ΜΒ

Thus our configuration is easily capable of residing in-
memory on a single processing node.

V. DISCUSSION AND FUTURE WORK
In this paper we show how a CEP approach can be used

to implement real-time analytics against existing healthcare
messaging and improve HIT safety and efficiency. This is
achieved through monitoring statistical quality metrics
against pathology laboratory reports and through detection of
duplicates in pathology orders. Alerts are used to notify
necessary parties when quality issues or duplicates are
detected.

We have implemented this solution using test data
derived from messages used for conformance testing against
Australian HL7 v2 pathology messaging standards. The
solution has been demonstrated to a selected set of
stakeholders. As suggested by our analysis, the memory
requirements of the solution are well-contained. The
duplicate detection and data quality solutions are able to
process 2000-3000 HL7 v2 messages per second each on a
single CPU core, which is more than adequate for likely
deployment scenarios.

This experience provides a basis for the implementation
of other, similar applications based on monitoring of HL7 v2
messages, including those that involve natural language
description of medical terms as reported for example in [22]
in which they generate structured documents for cancer
reports from natural language observations. In addition,

EventSwarm could be also used to detect network problems
or problems with laboratory equipment or other medical
devices if they support access points for operational quality
checking.

In general, CEP can be used in many other eHealth
applications, for example: i) real-time monitoring of patient
conditions in intensive care units, where similar surveillance
of patient condition indicators could be used to detect critical
changes in patient condition; ii) detection of disease
outbreaks through monitoring a combination of streams
including social networking, clinical information systems
and messaging to registries of reportable diseases; iii)
detecting fraud in e-Medication systems such as attempts to
request multiple doses of the same drug; and iv) exchange of
alerts between health providers and emergency services
organizations to assist in crisis management scenarios.

CEP can be also used in detecting non-clinical causes of
harm to patients such as those arising from suspicious
cybercrime activities as indicated in [4] or possible violations
of privacy policies. Finally, CEP can be used to facilitate
better care coordination interactions, for example: i)
laboratory alerting systems that apply clinical decision
support to identify critical results and page physicians when
they occur [19]; ii) the detection of delays in healthcare
delivery as specified in the recently proposed care
coordination service [21]; and iii) to remind patients to take
medication or make an appointment associated with a
referral.

We intend to further experiment with other uses of
EventSwarm in healthcare, both to improve safety of HIT
systems and also to support other monitoring and alerting
applications in eHealth as discussed above.

VI. CONCLUSIONS
This paper describes the architecture and implementation

of a real-time analytics solution to support improving quality
and safety of HIT systems and reducing unnecessary costs
due to inadvertent issue of duplicate lab orders. The solution
applies syndromic surveillance approach over HL7 v2
messages received and transmitted by clinical laboratory
systems. The paper extends work of Ong et al [4] who
demonstrated the feasibility of syndromic surveillance
algorithm for monitoring of HIT systems. The novelty of our
approach is in designing and implementing syndromic
surveillance rules in a large and complex healthcare
environment with minimal disruption to existing HIT
environments through interception and analysis of HL7 v2
messages.

We believe this is the first reported application of a CEP
technology for monitoring of quality and safety in HIT
systems, and should pave the way for ongoing improvements
in HIT system quality and safety through real-time analytics.

The paper also presents a review of capabilities and
semantics of CEP technologies, highlighting the flexibility,
utility and novel features of the EventSwarm CEP
framework. While implementations of this technology are
relatively mature, there are many factors that influence the
ability to provide near-real-time analytics for big data in

motion. The results presented in this paper demonstrate the
ability of EventSwarm to provide such solutions.

VII. ACKNOWLEDGMENTS
We would like to thank Prof Enrico Coeira for initial

review of this paper. We would also like to thank Klaus Veil
and Grahame Grieve for planting the seeds that gave rise to
this work, and to Dr Michael Legg for fruitful discussions
around pathology practices and technology.

REFERENCES
[1] Committee on Patient Safety and Health Information Technology;

Institute of Medicine. Health IT and patient safety: building safer
systems for better care. The National Academic Press, 2012.

[2] HL7 Standard Version 2.4: An Application Protocol for Electronic
Data Exchange in Healthcare Environments. Health Level 7, Ann
Arbor MI USA, http://www.HL7.org.

[3] http://www.deontik.com/Products/EventSwarm.html
[4] Mei-Sing Ong, Farah Magrabi and Enrico Coiera, “Syndromic

surveillance for health information system failures: a feasibility study,
“ J Am Med Inform Assoc published online November 26, 2012

[5] Luckham, D., The Power of Events, An intoduction to Complex
Event Processing in Distributed Enterprise Systems, Addison Wesley,
2002

[6] Jean Bacon, Ken Moody, John Bates, Richard Hayton, Chaoying Ma,
Andrew McNeil, Oliver Seidel, Mark Spiteri, Generic Support for
Distributed Applications" IEEE Computer, March 2000, pp 68-76

[7] http://complexevents.com/stanford/rapide/
[8] A. Rakotonirainy, A. Berry, S. Crawley, and Z. Milosevic: Describing

Open Distributed Systems: A Foundation. The Computer Journal,
1997

[9] Andrew Berry: Describing and Supporting Complex Interactions in
Distributed Systems. The University of Queensland, July 2001

[10] Zoran Milosevic, Peter Linington, Simon Gibson, James Cole, Sachin
Kulkarni, On design and implementation of a contract monitoring
facility, IEEE Conference on Electronic Commerce, the 1st IEEE
Workshop on Electronic Contracting (WEC04)

[11] Peter F. Linington, Zoran Milosevic, James B. Cole, Simon Gibson,
Sachin Kulkarni, Stephen W. Neal: A unified behavioural model and
a contract language for extended enterprise. Data Knowledge
Engineering 51(1): 5-29 (2004)

[12] http://www.progress.com/en-au/apama/index.html
[13] http://esper.codehaus.org/
[14] http://www-01.ibm.com/software/au/data/infosphere/
[15] http://www.tibco.com.au/products/event-processing/complex-event-

processing/default.jsp
[16] http://www.oracle.com/technetwork/middleware/complex-event-

processing/overview/index.html
[17] http://www54.sap.com/solutions/tech/database/software/sybase-

complex-event-processing/index.html
[18] C. Fidge. Logical time in distributed computing systems. IEEE

Computer, pages 28–33, Aug. 1991.
[19] HL7 Version 3 Standard: Decision Support Service (DSS),

Release 1, August 2011
[20] Gianpaolo Cugola, Alessandro MargaraProcessing. Flows of

Information: From Data Stream to Complex Event Processing, ACM
Computing Surveys (CSUR), Volume 44, Issue 3, June 2012

[21] http://wiki.hl7.org/index.php?title=Care_Coordination_Service
[22] Anthony Nguyen, Julie Moore, Derek Ireland, Guido Zuccon, Deanne

Vickers, Bevan Koopman, Michael Lawley, Shoni Colquist,
Streaming medical report analytics at increasingly “big data” scale, in
Australian HISA big-data conference, 2013

