
On the mapping of business contracts to executable choreography

A. Berry Z. Milosevic
<andyb@whyanbeel.net> <zoran@dstc.edu.au>

Brisbane QLD Distributed Systems Technology Centre
Australia University of Queensland

Brisbane QLD 4072
Australia

Abstract

In this paper we present a mapping from the concepts
and terms of a business contract language (BCL) to the ex-
ecutable primitives of a fully-distributed choreography en-
gine (Finesse). In doing so we demonstrate the feasibility
of compiling a business contract specification into an exe-
cutable program suitable for execution on emerging chore-
ography platforms. Through this process we also identify
minimal properties of a business contract specification nec-
essary to deterministically transform the specification into
an executable program, and similarly, we highlight the key
semantic properties of a choreography engine necessary to
implement business contracts. This mapping indicates how
a business contract specification might be mapped onto a
standard process execution environment for E-commerce.

1 Introduction

Business contract languages are approaching the point
where specifications in such languages can be used directly
in the execution and monitoring of electronic business con-
tracts. Commercial products are available to manage con-
tracts within an organisation for some common processes
like procurement[6, 10, 25], and recent research has pro-
posed more general languages for cross-organisational con-
tract management[15, 17, 28, 8, 26].

In parallel with this activity in support of electronic
contracts, the maturity of technology for the co-ordination
of activities or processes spanning multiple autonomous
participants is improving. Recent work in the W3C
standards body is focusing on so-calledchoreography
specifications[13] and the OASIS consortium is working to
ensure that the ebXML standards[7] are capable of describ-
ing and supporting choreography. In parallel with these
efforts, there are a number of organisations that have an-
nounced plans to support choreography standards[4]. The

primitives in choreography languages have been guided by
previous work on co-ordination languages[5, 2] and the se-
mantics of specification languages for distributed processes,
particularly pi calculus[19].

This paper examines the likely convergence of these
technologies in a concrete fashion by presenting a mapping
from BCL[17, 23] to the executable primitives of the Fi-
nesse choreography engine[1]. These technologies share a
common heritage in work on the RM-ODP standards[11]
and subsequent collaborative work[21, 27]. While both
BCL and Finesse can operate capably in an environment
with centralised control, this paper is focused on distributed,
autonomous, business-to-business activities because such
activities give rise to a unique set of issues that are not
present in systems with centralised control. These issues
will be discussed in more detail in subsequent sections.

A mapping between a business contract specification and
a process definition indicates how rules and policies in busi-
ness contracts can be used in the design of processes for E-
commerce and E-business platforms. We envisage that such
platforms will be the target infrastructure for implementa-
tion and monitoring of electronic contracts in the future.

The following section of the paper describes the tech-
nologies in more detail, providing a basis for the mapping
of BCL terms to Finesse primitives. In section 3, a mapping
between BCL and Finesse is presented using an example
contract for a purchasing process. This is followed in sec-
tion 4 by a discussion of the issues uncovered, in particular,
the capabilities required of both a choreography engine and
a business contract language.

2 Technology Overview

Finesse and BCL are technologies emanating from the
Distributed Systems Technology Centre (DSTC), both di-
rectly and through sponsored PhD research programs[1,
20]. They were both influenced in the early stages by the



participation of DSTC in the RM-ODP[11] standards effort
of the mid-90s, and the relationship has been continued in
BCL through its adoption of community models from the
ODP enterprise language[12]. A number of joint papers in-
volving the authors[21, 27] have also influenced the sub-
sequent development of the technologies. The following
subsections describe the technologies in more detail. A dis-
cussion of the relationship between these technologies and
other technologies and standards is also presented.

2.1 BCL

Business Contract Language (BCL) has been developed
for the purpose of specifying contract conditions so that the
contract execution can be monitored in an event-based fash-
ion. This contract execution ultimately refers to various ac-
tivities of the signatories to the contract, and whether these
activities signify fulfillment or violation of policies agreed
in the contract. A special case of policy violation refers
to situations in which a required activity of a signatory to
the contract has not been carried out—thus the monitoring
needs to detect these activity non-execution cases.

Eventsare the key behavioural modelling concept in
BCL. A single event can be used to signify an action of
a signatory or to signify a temporal occurrence such as a
deadline. Multiple events can be combined and used to de-
scribe the execution of more complex activities. The BCL
concept ofevent patternis used to specify events, relation-
ships between events and properties of events that are of
relevance to business contracts. Examples are logical re-
lationships between events (AND, OR, NOT ), temporal re-
lationships between events (e.g. before and after), tempo-
ral constraints on event patterns (e.g. absolute and relative
deadlines and sliding time windows[24]), event causality,
and certain special kinds of of singleton event pattern (e.g.
contract violation and state change events). The event pat-
tern approach has many similarities to the work by Luck-
ham on complex event processing[18].

Event patterns are a key component in checking policies
related to a contract. Policies define behavioural constraints
in terms of event patterns and are associated with the roles
that execute activities. Policy checking consists of identi-
fying event patterns in activities of parties filling a role and
ensuring that they satisfy the policies.

It is often the case that contract related events can change
the state of certain variables associated with the contract. To
this end, BCL introduces the notion of a state (of a specific
contract variable) and the value of this state can be either
determined explicitly in response to an event, or on request
when the state value is needed. A contract can have many
states that are changing to reflect the corresponding events.

A contract consists of a set of policies that apply to the
behaviour of signatories to the contract. Thus policies take

a form of modal constraints such as obligations, permis-
sions and prohibitions. These modal constraints in a con-
tract specification reflect their English-language meaning:
obligations identify activities that must occur, permissions
identify activities that may occur, and prohibitions identify
activities that must not occur. In all cases, these constraints
can be conditional, for example, if payment is not made then
the supplier is permitted to charge interest on the outstand-
ing amount.

BCL introduces the concept of acommunity, which can
be regarded as an overarching concept for the specification
of objects that collaborate to achieve a certain goal. These
objects fill the roles of a community. So, a community is
defined as a set of roles, policies, states and related event
patterns that apply to the community. A community is a
general concept for describing collaboration and one spe-
cific kind of community is a business contract.

2.2 Finesse

Finesse provides a model, operational semantics, lan-
guage and execution engine for co-ordination of behaviour
across distributed, autonomous participants. A Finesse
Binding specification defines a set of roles, the role be-
haviours, and the interactions between roles. Role and in-
teraction behaviours are specified separately, capturing the
key semantic distinction between local and distributed be-
haviour.

Behaviour is specified in terms of events templates and
their relationships. Events templates are templates for the
execution of events and are explicitly associated with a role.
Roles are bound to locations at instantiation time and the
event templates of a role can then be executed by the lo-
cation(s) bound to that role. Relationships between event
templates are declaratively expressed as causal dependen-
cies. For example, if we have event templatesE1 andE2,
a causal dependency declaring that E2 causally depends on
E1 is expressed in the language asE1 -> E2 . The impli-
cation of this declaration for execution is that an execution
of E2 cannot occur until the location at which E2 occurs is
aware that an execution of E1 has occurred. If E1 and E2
are co-located, then this is immediate and requires no fur-
ther action. If E1 and E2 are not co-located, then messaging
is required to ensure the location of E2 is aware that E1 has
occurred.

Data flow is also defined declaratively through functional
relationships between event parameters and can only exist
in the presence of a causal relationship. For example,E1
-> E2 {E2.z = f(E1.x, E1.y) }, specifies thatE2
depends onE1 and its parameterz is equal to the result of
evaluating the functionf(E1.x, E1.y) .

Roles in Finesse have cardinality, that is, a single role
can be filled by more than one participant in aBinding in-



stance. Role behaviour defines the behaviour of a single
participant in isolation. Any co-ordination across partici-
pants filling the same role must be specified as interaction
behaviour. This maintains the distinction between local and
remote behaviour.

Interaction behaviour defines event relationships for
event templates executed in distinct roles or between dis-
tinct participants filling the same role. The existence of
a causal relationship between event templates executed at
distinct participants implies messaging between the partic-
ipants. The implicit nature of this messaging allows com-
pilation to optimise messaging semantics if desired. For
example, notifications of two local event occurrences can
be combined if both events are required to satisfy causal
dependencies at a remote location. The presence of explicit
parameter relationships also allows optimisation of message
payload, that is, the execution engine need only send those
parameter values required to evaluate parameter relation-
ships.

The Finesse model, semantics, language and the execu-
tion engine are described in detail in chapters 4, 5 and 6 of
[1] respectively. There are also published papers describing
the language[2] and the semantic model[3] in isolation. The
operational semantics is formally defined in [1].

2.3 Relationships with Other Technologies

While there are no standards comparable with BCL,
some aspects of its behavioural specifications overlap with
available business process definition and execution tech-
nologies like BPEL[29] and ebXML[7]. BCL allows a
business-oriented specification of policies or contract terms
to be applied to existing process definitions. An event pat-
tern is a means for describing a state of affairs. A state of af-
fairs can range from the elementary, such as the occurrence
of a particular action performed by a party or the passing of
a deadline, to the more complex, such as ”more than three
sets of down time in any a one week period” and ”one of
the contract conditions has been violated”. Event patterns
are used within policies to specify policy constraints in a
contract. The goal is not to specify complete behaviour or
business processes, but to define contract-related constraints
over that behaviour. As an analogy, BCL can be thought of
as an aspect-oriented language[14] that expresses business
policies for processes.

One of the key targets for BCL is the specification of
policies for business-to-business interactions. Early pro-
cess technologies for workflow and most existing business
process management products are restricted to definitions
of the local process. There is no capability to express
constraints on interactions between autonomous business
processes. The emerging choreography technologies and
standards[4, 13] address this deficiency. As with local pro-

cesses, BCL can be seen as complementary to these tech-
nologies.

Finesse pre-dates the recent work on choreography tech-
nologies by several years but provides implemented tech-
nology and formal operational semantics satisfying the
key goal of choreography: to co-ordinate the behaviours
of distributed, autonomous participants in a business-to-
business interaction. The semantic model provides expres-
siveness equivalent to or exceeding the capabilities of major
process models and technologies like pi calculus[19] and
ebXML[7]. The explicit model of locality and use of a
truly concurrent operational semantics are key distinguish-
ing features that make it ideal for describing processes that
span distributed, autonomous participants. The Finesse en-
gine can be thought of as a distributed, asynchronous and
programmable process engine. The engine does not, how-
ever, provide any means of storing state beyond the state
embodied in the run-time history of executed events.

In the context of business contracts and choreography,
we expect that the Finesse engine or an equivalent choreog-
raphy engine would be embedded in a web services envi-
ronment to control and monitor the execution of business-
to-business interactions, with existing BPM and workflow
technology used to manage processes behind the web ser-
vices interface within each organisation.

3 Mapping BCL to Finesse

The common heritage of BCL and Finesse discussed in
section 2 provides us with an opportunity to explore the
mapping between contract languages and choreography en-
gines without the effort required to resolve significant se-
mantic differences that might have occurred for entirely dis-
tinct technologies. The key issues lie primarily in the need
to map a domain-specific language (BCL) onto the generic,
technology-focused operational semantics implemented by
the Finesse engine.

The mapping explicitly identifies the relationship be-
tween BCL terms defined in [17, 23, 22] and the Finesse
language presented in [1]. In subsequent sections, the name
Finessecan be understood to refer to this language rather
than the engine or semantic model. The mapping of the Fi-
nesse language to the operational semantics implemented
by the Finesse engine is described in detail in chapter 5 of
[1]. A compiler would most likely use the Finesse opera-
tional semantics to map BCL concepts directly onto the in-
ternal form used by the engine for execution, but this inter-
nal form is not human readable and so the language syntax
is used in this paper.

This following subsections define the mapping between
key semantic concepts and syntactic elements in BCL and
corresponding Finesse semantic concepts and syntactic el-
ements. The mapping is driven by a purchasing exam-



ple, with fragments of language expressions introduced pro-
gressively and the mapping discussed alongside these frag-
ments. As such, the mapping defines the compilation of key
elements from the BCL language elements in the example
to Finesse language elements.

Note that the resulting Finesse behaviour will not neces-
sarily be a complete specification of the behaviour required
to implement a purchasing process. The BCL fragments are
contract-oriented constraints over the purchasing process.
The Finesse behaviour specifications generated by the map-
ping need to be conjoined with the procedural behaviour
specifications for the purchasing process to generate a com-
plete process definition.

In the following text, BCL terms are highlighted through
use of italicised sans-serif font likethis and Finesse terms
are highlighted through the use of a fixed-width font like
this .

3.1 Example Overview

The example defines a relatively simple contract for a
purchasing process involving three roles: purchaser, sup-
plier and freighter. The purchaser places orders with the
supplier, the supplier is obliged to fill those orders within
an agreed time frame and the freighter is obliged to trans-
port the goods from supplier to purchaser within an agreed
time frame. Beyond these basic roles, the following terms
apply to the contract:

1. The purchaser has a credit limit with the supplier as
part of the agreement. The credit limit is a maximum
outstanding amount with no particular time limit. The
purchaser is not permitted to exceed the credit limit.

2. The supplier is permitted to provide a bill every 30
days from contract start (a point in time).

3. The purchaser is obliged to pay the balance of the
monthly bill within 30 days of the billing date and
time.

4. The supplier is obliged to have goods ready for ship-
ment within 5 days of receipt of a purchase order.

5. The freighter is obliged to deliver goods within 5 days
of the goods being ready for shipment.

The following subsections walk through a BCL defini-
tion of this contract and its terms, defining Finesse code
fragments to match each BCL fragment. Discussion of each
transformation is presented to highlight relevant issues and
semantic difficulties.

3.2 CommunityTemplate

A BCL contract definition is aCommunityTemplate, in-
troduced with the following syntax:

CommunityTemplate: PurchasingContract

A CommunityTemplate is the context for defining con-
tract behaviour and is introduced by a name. The defi-
nition of roles, states, policies and event patterns is con-
tained within the template, as discussed in subsequent sec-
tions. The corresponding term in the Finesse language is
a Binding which defines a context for choreography be-
haviour specification. In both cases, these are the top level
components of a specification. The matching Finesse syn-
tax is thus:

Binding PurchasingContract { ... }

The binding specification is defined by code appearing
within the braces{}, indicated by the ellipses (... ) in the
fragment above.

3.3 Role

A BCL Role is used to associate behaviour with a party
to a contract at the specification level. BCL roles are names,
with the expected behaviour of parties filling roles defined
in subsequentPolicy and embeddedEventPattern defini-
tions associated with a specificRole name. The syntax for
role identification is as follows:

Role: Purchaser
Role: Supplier
Role: Freighter

The corresponding term in Finesse is also namedRole .
Finesse roles define the behaviour of participants in a
Binding . FinesseRole definitions contain a com-
plete definition of the visible behaviour associated with the
Role . This behaviour is always local to the participant, that
is, it defines the event templates and event relationships that
a participant filling the role can execute. The role behaviour
cannot identify or reference behaviour associated with other
roles: this is remote behaviour. The corresponding syntax
for the roles above is thus:

Roles {
Purchaser {...}
Supplier {...}
Freighter {...}}

As we progress through the example, each of the policy
statements will add behaviour to these Finesse roles. The
Finesse role definition is defined as the logicalANDof the
behaviours corresponding to BCL policies.

Note that both BCL and Finesse roles have cardinality,
that is, more than one party in a contract or participant in a
binding can fulfill a role and some roles are optional. The
default, however, is that a single participant fills each role.
Other cardinalities are not used in the example.



3.4 Event Pattern

As discussed previously in section 2.1, event patterns are
a key component in checking policies related to a contract.
Policy checking consists of identifying event patterns in ac-
tivities of parties filling a role and ensuring that they sat-
isfy the policies. In most cases, events are matched with an
event pattern by event type. The purchase order is the key
data exchanged and its type is specified as follows:

EventType Id=PurchaseOrder
Defined by XMLSchema

for EDIFACT PurchaseOrder

This specifies that a purchase order event is signified by
the existence of an XML document using the EDIFACT
PurchaseOrder XML schema. Events in BCL can involve
multiple EventRoles. The EventRole concept is a generic
labelling mechanism for identifying roles in event execution
that can be played by participants. An event with multiple
roles is specified as follows:

Event typeId=PurchaseOrder
EventRole name=Buyer
EventRole name=Seller

Note that the event roles do not match the contract roles:
by using generic event role names, the same event definition
can be re-used in many contexts.

The multi-party nature of events in BCL implies that a
messaging process or protocol is required to “execute” the
event. BCL does not define this protocol or constrain the
messaging semantics. For the purposes of this sample trans-
formation, the first role identified in a BCL event specifica-
tion is considered to be responsible for starting the execu-
tion, with all other roles requiring notification of that start.
We also assert for this transformation that the data associ-
ated with the event is defined at the start and is immutable.

To transform the BCL for an event into Finesse code, we
will use two fragments of code: the first defining a generic
implementation of BCL events, and the second defining the
PurchaseOrder event as a specialised version of the generic
implementation.

Binding BCLEvent (DOCUMENT) {
Roles {

Initiator {initiate!(DOCUMENT)}
[# >= 0] Receiver {receive?(DOCUMENT)}}

Interactions {
Initiator.initiate ->

[#=all] Receiver.receive {*= prev}}
}

This is a parameterisable definition of event dissemina-
tion with multiple recipients. TheDOCUMENTplace holder
can be replaced with any valid parameter expression. The

default cardinality for roles is exactly one, so there is only
one Initiator . The [# >= 0] cardinality specifica-
tion on theReceiver role specifies that there can be zero
or more receivers. TheInitiator executes an output
event initiate and this is followed by allReceiver
participants executing aReceive event. The*= prev
expression indicates that thereceive event should have
its parameters assigned to the value of the same-named pa-
rameters from the preceding event. A key point to note,
however, is that this Finesse definition does not include any
semantics for handling communication failure: the receiver
of an event will wait indefinitely for the event notification to
be delivered. This reflects the nature of the BCL specifica-
tion, which also makes no provision for failure. If required
to address legal concerns, communication failure can be ad-
dressed in the BCL specification by separating the sending
and receipt of the purchase order and defining policies for
non-receipt of a purchase order.

The second fragment describing a re-usable
PurchaseOrder event is as follows:

Binding PurchaseOrder {
Import BCLEvent;
Roles {

Buyer {
BCLEvent.Initiator((doc:EdifactPO))}

Seller {
BCLEvent.Receiver((doc:EdifactPO))}}

Interactions {
BCLEvent(Buyer,Seller)}

In this definition, we have specialised theInitiator
role definition to define the parameter list as containing a
singleEdifactPO parameter. There is an assumed trans-
lation between the data type systems of the two languages.
Since Finesse uses a generic type system based on the no-
tions of sets and functions this is a reasonable assumption,
although it is something that deserves further exploration in
future work.

Finally, we specify the binding in BCL of event roles to
contract roles. This is achieved for the purchasing example
using the following code:

Event typeId=PurchaseOrder
EventRole name=Buyer

RoleType name=Purchaser
EventRole name=Seller

RoleType name=Supplier

This applies to all purchase orders in the community
template, meaning that the event pattern will only be
matched if thePurchaser fills the Buyer event role and the
Supplier fills the Seller role.

The mapping of event roles to contract roles is matched
in Finesse using the following code in the top-level binding
specification:



Import PurchaseOrder;
Roles {

...
Purchaser {

loop {PO {PurchaseOrder.Buyer}}
AND ... }

Supplier {
loop {PO {PurchaseOrder.Seller}}
AND ... }}

Interactions {
PurchaseOrder(Purchaser.PO,

Supplier.PO)
AND ... }

Our previous fragments have been complete binding
specifications suitable for re-use whereas this is a fragment
of the purchasing contract binding specification. The
loop iteration constructs signifies that the enclosed role
behaviour can be repeated indefinitely: without the loop,
the Purchaser would be permitted to initiate only
one PurchaseOrder . This iteration is the default
behaviour in BCL, with explicit policies required to limit
the number of occurrences of an event. Since we need
to describe interactions between specific fragments of
behaviour in participants, we must identify those fragments
unambiguously, hence the introduction of the namePO
for the behaviour in each role definition. The interac-
tion behaviour binds thePurchaseOrder.Buyer
and PurchaseOrder.Seller behaviours of the
Purchaser and Supplier respectively. Iteration
constructs are not used in the definition of interaction
behaviour: iteration is implied by role behaviour.

Event specifications in the same style as thePurchase-
Order specification are assumed for the other events refer-
enced in the example, specifically,GoodsReady, GoodsDe-
livered, InvoiceSent, Payment, GoodsShipped .

3.5 State

BCL has aState construct for defining data values shared
by the participants in theCommunityTemplate. This is used
to maintain running totals, counters and other state required
to evaluate policy. Such state defines a set of update actions
and is introduced with the following syntax:

State: OutstandingDebt
CalculationExpression

UpdateOn: Payment
UpdateSpecification:

return this - Payment.Amount
CalculationExpression

UpdateOn: GoodsDelivery
UpdateSpecification:

return this + GoodsDelivery.Amount

This defines the outstanding debt of a purchaser, which
is updated whenever an order is delivered and whenever a

payment is made. State changes are bound to event pat-
terns and are deterministic, that is, the value of a state can
only be modified through the matching of visible event pat-
terns. While such state is relatively easy to maintain con-
sistently in an environment with centralised control, main-
taining state in a distributed context is considerably more
difficult.

In Finesse, the only state maintained is the event history
and this is maintained at all participants as a partial view
of the complete event history. The local event history is
updated only by local event execution and the delivery of
remote event notifications. This avoids any need for explicit
synchronisation between distributed engines but also forces
a programmer or compiler to explicitly define the semantics
of shared state if required. The current implementation of
Finesse also does not have any ability to provide persistent
storage of state at participants.

For this mapping, we will take the approach of defining
an extra Finesse role responsible for shared state. This ex-
tra role is a separate role to avoid static specification of the
participant “owning” the state. The choice of participant to
maintain this state can be made when the binding is instan-
tiated or deployed, noting that a single participant is permit-
ted to fill multiple roles in a run-time Finesse binding. The
operations to update the state are omitted from the Finesse
specification because it does not support persistent state. To
maintain the state according to the contract specification a
compiler could, for example, generate a J2EE entity bean
implementing the update semantics against a database and
deploy this as required at one of the participants. Assuming
the existence of an remote procedure call (RPC) binding
fragment[1], the necessary code is thus defined as follows:

Import RPC;
Roles {

...
State {

outstandingDebt {
loop {

debit{RPC.Server((x:Real)())} OR
credit{RPC.Server((x:Real)())} OR
balance{RPC.Server(()(y:Real))}}}}

Interactions {
...
Freighter.GoodsDelivered.Sender.initiate

-> State.outstandingDebt.debit.receive
{x=prev.amount}

AND Purchaser.Payment.Sender.initiate
-> State.outstandingDebt.credit.receive

{x=prev.amount}}

In this fragment, a newState role has three RPC oper-
ations onoutstandingDebt for debit , credit and
balance . Thedebit behaviour is fired by the freighter
initiating a GoodsDelivered event. Note that Finesse



does not require that an RPC server response event is at-
tached to a corresponding client receive: it will be silently
discarded if not required. Similarly, thecredit behaviour
is fired by the purchaser initiating aPayment event. The
balance behaviour will be used by any policy requiring
the current balance. If other state is required in a BCL con-
tract, it can be added to this Finesse role in a similar manner
or alternatively, a separate Finesse role for each BCL state
can be defined.

There are many performance, scalability and robustness
implications in the above code. For example, one of our
policies is that a purchase order is only permitted if the out-
standing debt is less than the credit limit. This means that all
purchase orders are preceded by an RPC to retrieve the bal-
ance. If the participant holding the balance is unavailable,
then the purchase order cannot proceed. Other solutions
can remove this problem by changing the synchronisation
behaviour or moving the state to the place where it is re-
quired, but all generic solutions will be susceptible to dirty
reads, failures or starvation (consistent failure of updates
because of synchronisation requirements) when consistent
state is required in more than one location.

Given this discussion, anyCommunityTemplate that re-
quires consistent state shared across participants must be
handled with some care. For a cross-organisational con-
tract, it will almost always be preferable to replace shared
state with explicitly located state and an asynchronous state
alignment protocol.

3.6 Policy

A Policy is used to specify business-level constraints in
a BCL CommunityTemplate[17]. It is explicitly associated
with a Role and has aModality indicating whether it is an
obligation, permission or prohibition. The behaviour asso-
ciated with a policy is a conditional expression over events
expressed as an event pattern. There are three modes of pol-
icy expression: obligation, permission and prohibition. The
mapping of these policy expressions to Finesse language
constructs is discussed in the following subsections.

3.7 Obligation

A BCL Policy can have anObligation modality, indicat-
ing that the event pattern defined in the policy must occur.
An obligation is specified as follows:

Policy: FillPuchaseOrder
Role: Supplier
Modality: Obligation
Condition:

GoodsReady.date < PurchaseOrder.date + 5 days

The policy specifies the purchase order filling time con-
dition as an event pattern. The policy specifies that the sup-

plier is obliged to have the goods ready for shipment within
5 days of the purchase order. A simple mapping of this be-
haviour is as follows:

Roles {
...
Supplier {

loop { PO ->
[timeless(prev, 5*3600*24)]

GoodsReady XOR
[not timeless(prev, 5*3600*24)]

FillPOViolated }
AND ... }}

From the BCL policy specification, we can infer that the
GoodsReady event must have a causal dependency on a
precedingPurchaseOrder event. In our translation to Fi-
nesse, we use guards and a logical XOR to specify that if
the GoodsReady behaviour is not executed within 5 days, a
FillPOViolated event is executed to indicate that the
policy has been violated. This violation event is implicit in
BCL, although if the violation event is referenced in other
contract behaviour, it can be explicitly identified in the spec-
ification. Note that thetimeless(...) function is a
built-in guard function that evaluates to true when the time
since the identified event (in this case, the keywordprev
indicating the preceding event in the specification) is less
than a specified number of seconds.

The definition of monitoring for this obligation is made
easier by the explicit specification of a time period in the
policy. If the obligation is not satisfied in the the time pe-
riod, then a violation event is generated. A violation event
can also be explicitly associated related policies to indicate
non-fulfillment of the obligation in question. An obligation
with no mechanism for identifying non-fulfillment is con-
sidered incomplete and cannot be adequately monitored or
enforced.

In this mapping we have used the knowledge that both
PurchaseOrder andGoodsReady event patterns are visible
in the Supplier role, either as initiator or as receiver. Be-
cause both events are locally visible, the obligation can be
locally monitored. If this is not the case, then we have to
decide where to evaluate and monitor the obligation. The
issue of where to monitorObligations is an instance of the
general problem of making consistent observations in dis-
tributed systems[9]. Consider our example: a supplier has
an obligation to have goods ordered by a purchaser ready
for shipment within 5 days. There are several ambiguities
arising from this simple English statement:

• When does the 5-day period begin? In our example, we
have specified that begins when the supplier receives
the order. Without this explicit specification, there is
considerable potential for ambiguity and dispute.



• Who monitors or enforces the 5-day period? If mon-
itored by the purchaser, then the purchaser must have
confirmation the order was received with an accurate
and trusted timestamp indicating the time of receipt.
What if the confirmation is lost or is timed out?

• If the purchaser is monitoring, how do they know that
the goods have been shipped? They need a notifica-
tion that the order has been shipped, also having an
accurate and trusted timestamp indicating the time of
shipping. What if that notification is lost or times out?

Notice that in all three items above, the location of ac-
tions is critical to the contract. If the time period is mea-
sured from the time the order is sent by the purchaser, the
supplier becomes responsible for lost orders. If monitoring
were to be carried out at the supplier, then we remove the
problem of lost notifications but add the need for increased
trust in the supplier to admit violations (which we have as-
sumed in our solution above). If we use transactional mes-
saging, the problem of lost notifications is removed, but at
what point does the transactional messaging system stop at-
tempting to send a failing message and notify the sender of
failure? In the general case it is impossible to guarantee de-
livery of messages in a fixed time frame so this exception
must be explicitly handled. The implication is that remote
monitoring of obligations can only identify possible vio-
lations, with further evidence required from the source of
monitored events to accurately establish the violation of an
obligation in the event of message failure. More complex
obligations can involve behaviour at multiple locations so
using a generic rule to detect violations at the source cannot
be universally applied.

We can resolve these issues in the general case by defin-
ing a monitoringRole in Finesse for each BCLObligation.
Roles in Finesse are bound to a location during binding es-
tablishment, so the monitoring location can be identified by
the parties involved for each run-time instance and could
potentially use a third-party monitor. Since Finesse roles
can be filled by multiple participants, it is conceivable that
more than one participant actively monitors the obligation.
Note also that we must rely on accurate measurement and
recording of time with events at all locations.

Similar specification of obligations in BCL and map-
pings to Finesse can be defined for the other obligations
identified in the example overview of section 3.1.

3.8 Permission

A BCL Policy can have anPermission modality, indicat-
ing that the behaviour defined in the policy is allowed to
occur. For example:

State: LastInvoice
InitialisationSpecification: StartDate
CalculationExpression

UpdateOn: InvoiceSent
UpdateSpecification:

return InvoiceSent.date

Policy: MonthlyInvoice
Role: Supplier
Modality: Permission
Condition:

(InvoiceSent.date - LastInvoice) = 30 days

We use a State specification to capture the date of the
last invoice which is initialised to the contract start date.
The policy specifies that the supplier is permitted to send
an invoice only when exactly 30 days have elapsed since
contract start or the last invoice. We will assume that the
LastInvoice state is mapped to Finesse in the same manner
as theOutstandingDebt, in other words, through an inter-
face with ainvoiceDate RPC to retrieve the date. In
this case, the policy is mapped to a guard including the con-
dition and joined with existing behaviour using a logicalOR
as follows:

Roles {
Import RPC;
Roles {

...
Supplier {

loop {
invoiceDate {RPC.Client(()(d:Date))}
-> [now()-prev.d > (29*24*3600)

AND now()-prev.d <= (30*24*3600)]
InvoiceSent}

OR ...}}
Interactions {

RPC(Supplier.invoiceDate,
State.LastInvoice.invoiceDate)

AND ...}

This specifies that the supplier retrieves the last invoice
date from theState role using an RPC and can then exe-
cute theInvoiceSent behaviour any time in the period
from midnight on the 29th day to the end of the 30th day
after the last invoice date. TheOR in the role behaviour
says this behaviour is always allowed if the condition is
met. Note the implication that BCL permitted behaviours
with no condition are always allowed. The presence of con-
flicts between permissions and prohibitions or obligations
in BCL will, however, result in the prohibition or obligation
taking precedence.

3.9 Prohibition

A BCL Policy can have anProhibition modality, indicat-
ing that the behaviour defined in the policy must not occur,



for example:

Policy: CreditLimitForPurchaser
Role: Purchaser
Modality: Prohibition
Condition: PurchaseOrder(

OutstandingDebt > CreditLimit)

This is the BCL realisation of our credit limit constraint,
requiring that the outstanding debt is less than the credit
limit. In Finesse, this maps to a guard on the behaviour that
specifies a negation of the BCL conditional expression in
the prohibition. This behaviour is joined with other binding
behaviour using a logicalAND:

Roles {
...
Purchaser {

loop {
balance {RPC.Client(()(balance:Real))}
-> [NOT balance > CreditLimit] PO}

AND ...}}
Interactions {

RPC(Purchaser.balance,
State.outstandingDebt.balance)

AND ...}

Note here that we must use thebalance RPC operation
on theState role to obtain the current outstanding debt
using our model for shared state. When a prohibition is
unguarded, the policy is mapped to afalse guard on the
behaviour meaning that it cannot occur.

4 Discussion and Conclusions

The mapping presented in the preceding section pro-
vides an indication of the work required to compile business
contract specifications into executable choreography primi-
tives for control, monitoring and notification. It highlights
a number of key issues in the contract and choreography
semantic models, specifically:

1. Time and locality are critically important in the accu-
rate specification of policies.

2. The choreography environment must support the gen-
eration of events to signal potential contract violations.

3. The use of contact language event semantics requiring
reliable notification for event completion is not scal-
able or robust in the face of failure. Defining failure
semantics in terms of local, distinct execution and no-
tification receipt events can be used, but templates for
common failure behaviour would be useful to reduce
complexity.

4. In many cases, it is necessary to collect notifications
of events from many sources to satisfy event and pol-
icy semantics. This can imply delivery of event no-
tifications to more than one destination. The Finesse
model handles this elegantly, but it could add signifi-
cant complexity for choreography models based on ex-
plicit point-to-point messaging.

5. The concept of non-static shared state in a business
contract must be translated into a set of interactions
used to retrieve and optionally update that state. If the
concurrency and durability properties of the state are
important to the contract, then these properties must
be explicitly specified so that an appropriate transac-
tion model can be applied. In general, shared state is
difficult to manage in a truly distributed environment
and alternative mechanisms are preferable.

While these issues are problematic, the exercise has in-
dicated that a translation is feasible. We did not strike any
particular limitations in the transformation for this exam-
ple and expect that the mapping presented will work in a
relatively generic fashion for the features used. The useful-
ness of such translation needs to be explored further through
more complex examples. There are also features of BCL
that have not yet been explored and further work is required
to develop a complete and generic mapping.

In this paper we have used BCL and Finesse as vehi-
cles to demonstrate the conversion from business contract to
process definition and they have proven to be quite suitable
for the task. We have previously shown that it is possible
to monitor and enforce a contract using a language-specific
infrastructure like that presented for BCL in [22], but we en-
visage that such contract specifications will be used in envi-
ronments based on standard process execution technologies
like BPEL[29] and CDL[13] in future. This paper has pro-
vided an insight into the issues that need to be addressed,
and has identified several key semantic concepts in BCl and
Finesse that might contribute to future standardisation ef-
forts like OASIS eContracts[16] and standard process tech-
nologies respectively.

5 Acknowledgments

The work reported in this paper has been funded in
part by the Co-operative Research Centre for Enterprise
Distributed Systems Technology (DSTC) through the Aus-
tralian Federal Government’s CRC Programme (Depart-
ment of Industry, Science & Resources).

References

[1] A. Berry. Describing and Supporting Complex Inter-
actions in Distributed Systems. PhD thesis, University



of Queensland, 2002.
[2] A. Berry and S. Kaplan. Open, distributed coordi-

nation with finesse. InACM Symposium on Applied
Computing, Feb. 1998.

[3] A. Berry and S. Kaplan. A distributed asynchronous
execution semantics for programming the middleware
machine. InFifth International Symposium on Au-
tonomous Decentralized Systems, Dallas, Texas, USA,
Mar. 2001. IEEE.

[4] BEA, Intalio, SAP, Sun publish web services chore-
ography interface, 2002. Press Release.

[5] P. Ciancarini and C. Hankin, editors.Coordination
Languages and Models. Springer, 1996.

[6] Dicarta. http://www.dicarta.com.
[7] The OASIS ebXML standards. http://www.ebxml.org.
[8] A. Farrell, M. Sergot, M. Salle, C. Bartolini, D. Tras-

tour, and A. Christodoulou. Performance monitoring
of service-level agreements for utility computing us-
ing the Event Calculus. InFirst IEEE International
Workshop on Electronic Contracting, July 2004.

[9] C. Fidge. Logical time in distributed computing sys-
tems.IEEE Computer, pages 28–33, Aug. 1991.

[10] iMany. http://www.imany.com.
[11] ISO/IEC 10746-1 10756-2 10746-3 10746-4 Basic

Reference Model for Open Distributed Processing.
[12] ISO/IEC is 15415 Open Distributed Processing-

Enterprise Language, 2002.
[13] N. Kavantzas, D. Burdett, and G. Ritzinger, editors.

Web Services Choreography Description Language
Version 1.0. W3C, 2004. http://www.w3.org/TR/ws-
cdl-10/.

[14] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Videira Lopes, J. Loingtier, and J. Irwin. Aspect-
oriented programming. InProceedings of the Eu-
ropean Conference on Object-Oriented Programming
(ECOOP). Springer Verlag, June 1997.

[15] R. Lee. A logic model for electronic contracting.De-
cision Support Systems, 4(1):27–44, 1988.

[16] Oasis legalxml econtracts. http://www.oasis-
open.org/committees/legalxml-econtracts/charter.php.

[17] P. Linington, Z. Milosevic, J. Cole, S. Gibson,
S. Kulkarni, and S. Neal. A unified behavioural model
and a contract for extended enterprise. To appear in
Data Knowledge and Engineering Journal.

[18] D. Luckham.The Power of Events. Addison-Wesley,
2002.

[19] R. Milner, J. Parrow, and D. Walker. A calculus of
mobile processes. part i and ii.Information and Com-
putation, 100(1), 1992.

[20] Z. Milosevic. Enterprise Aspects of Open Distributed
Systems. PhD thesis, University of Queensland, 1995.

[21] Z. Milosevic, A. Berry, A. Bond, and K. Raymond.
Supporting business contracts in open distributed sys-

tems. InProceedings of the Workshop on Services
in Distributed and Networked Environments. IEEE,
1995.

[22] Z. Milosevic, S. Gibson, P. Linington, J. Cole, and
S. Kulkarni. On design and implementation of a con-
tract monitoring facility. InThe first IEEE workshop
on E-contracting (WEC04). IEEE, July 2004.

[23] Z. Milosevic, P. Linington, J. Cole, S. Gibson, and
S. Kulkarni. Inter-organisational collaborations sup-
ported by e-contracts. InThe IFIP I3E Conference,
Aug. 2004.

[24] S. Neal, J. Cole, P. Linington, Z. Milosevic, S. Gibson,
and S. Kulkarni. Identifying requirements for business
contract language: a monitoring perspective. InPro-
ceedings of EDOC2003. IEEE, Sept. 2003.

[25] Oracle Contracts.
http://oracle.com/appsnet/products/contracts/.

[26] O. Perrin and C. Godart. An approach to implement
contracts as trusted intermediaries. InFirst IEEE In-
ternational Workshop on Electronic Contracting, July
2004.

[27] A. Rakotonirainy, A. Berry, S. Crawley, and Z. Milo-
sevic. Describing open distributed systems: A foun-
dation.The Computer Journal, 40(8), 1997.

[28] Web service level agreements (WSLA) project.
http://www.research.ibm.com/wsla/.

[29] Business process execution lan-
guage for web services, May 2003.
http://www.ibm.com/developerworks/library/ws-
bpel/.


